RUS  ENG
Full version
PEOPLE

Kudryavtsev Sergey Nikolaevich

Publications in Math-Net.Ru

  1. Extension of Functions from Isotropic Nikol'skii–Besov Spaces and Their Approximation together with Derivatives

    Mat. Zametki, 108:5 (2020),  714–724
  2. Extension of functions in non-isotropic Nikolskii–Besov spaces and approximation of their derivatives

    Izv. RAN. Ser. Mat., 82:5 (2018),  78–130
  3. An analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces

    Izv. RAN. Ser. Mat., 80:3 (2016),  103–150
  4. A Littlewood–Paley type theorem and a corollary

    Izv. RAN. Ser. Mat., 77:6 (2013),  97–138
  5. Approximation and reconstruction of the derivatives of functions satisfying mixed Hölder conditions

    Izv. RAN. Ser. Mat., 71:5 (2007),  37–80
  6. Widths of classes of finitely smooth functions in Sobolev spaces

    Mat. Zametki, 77:4 (2005),  535–539
  7. Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes

    Izv. RAN. Ser. Mat., 68:1 (2004),  79–122
  8. The Stechkin problem for partial derivation operators on classes of finitely smooth functions

    Mat. Zametki, 67:1 (2000),  77–86
  9. Bernstein width of a class of functions of finite smoothness

    Mat. Sb., 190:4 (1999),  63–86
  10. The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points

    Izv. RAN. Ser. Mat., 62:1 (1998),  21–58
  11. Approximating one class of finitely differentiable functions by another

    Izv. RAN. Ser. Mat., 61:2 (1997),  111–126
  12. Approximation of a partial differential operator by bounded operators on a class of functions of finite smoothness

    Mat. Sb., 187:3 (1996),  75–92
  13. Diameters of classes of smooth functions

    Izv. RAN. Ser. Mat., 59:4 (1995),  81–104
  14. Recovering a function with its derivatives from function values at a given number of points

    Izv. RAN. Ser. Mat., 58:6 (1994),  79–104
  15. Recovery of the values of harmonic functions at a point from their values at other points

    Mat. Sb., 184:4 (1993),  3–22
  16. Approximate calculation of the Fourier coefficients of the function $1/f$ with respect to the Fourier coefficients of the functions $f$

    Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993),  306–309
  17. Some approximation problems for a class of functions with a prescribed majorant for the moduli of continuity of higher derivatives

    Mat. Zametki, 52:6 (1992),  45–52
  18. Some problems in approximation theory for a class of functions of finite smoothness

    Mat. Sb., 183:2 (1992),  3–20
  19. Approximations of compact sets of functions by piecewise polynomial surfaces in spaces of smooth functions

    Mat. Zametki, 49:6 (1991),  72–81
  20. On approximations of compact sets of functions by piecewise polynomial surfaces

    Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987),  1142–1169
  21. On approximations of compact sets of functions by algebraic surfaces

    Izv. Akad. Nauk SSSR Ser. Mat., 49:6 (1985),  1246–1259


© Steklov Math. Inst. of RAS, 2024