RUS  ENG
Full version
PEOPLE

Zavartsev Yurii Dmitrievich

Publications in Math-Net.Ru

  1. Collapse and revival of the electron spin echo of impurity Yb$^{3+}$ ions on hidden frequency combs of hyperfine interactions in a Y$_2$SiO$_5$ single crystal

    Pis'ma v Zh. Èksper. Teoret. Fiz., 115:6 (2022),  394–400
  2. Emission of molecular nitrogen upon electron bombardment of pyrolytic aerogel SiO$_2$ and aluminum

    Pis'ma v Zh. Èksper. Teoret. Fiz., 110:10 (2019),  652–657
  3. EPR spectroscopy of impurity thulium ions in yttrium orthosilicate single crystals

    Pis'ma v Zh. Èksper. Teoret. Fiz., 108:3 (2018),  211–216
  4. Lasing in a Tm:Ho:Yb3Al5O12 crystal pumped into the 3H63F4 transition

    Kvantovaya Elektronika, 46:3 (2016),  189–192
  5. Lasing in a Tm : Yb3Al5O12 crystal pumped at 1.678 μm

    Kvantovaya Elektronika, 44:10 (2014),  895–898
  6. Control of the spectral parameters of vanadate lasers

    Kvantovaya Elektronika, 44:1 (2014),  7–12
  7. Study of Tm : Sc2SiO5 laser pumped into the 3H63F4 transition of Tm3+ ions

    Kvantovaya Elektronika, 43:11 (2013),  989–993
  8. Two-frequency vanadate lasers with mutually parallel and orthogonal polarisations of radiation

    Kvantovaya Elektronika, 42:5 (2012),  420–426
  9. Effect of structural imperfections on lasing characteristics of diode-pumped YVO4, GdVO4 and mixed rare-earth vanadate crystals

    Kvantovaya Elektronika, 42:3 (2012),  208–210
  10. Vanadate lasers with σ-polarised radiation

    Kvantovaya Elektronika, 41:7 (2011),  584–589
  11. Diode-pumped Tm:Sc2SiO5 laser (λ = 1.98 μm)

    Kvantovaya Elektronika, 41:5 (2011),  420–422
  12. Diode-pumped two-frequency lasers based on c-cut vanadate crystals

    Kvantovaya Elektronika, 39:9 (2009),  802–806
  13. Heat conduction of laser vanadate crystals

    Kvantovaya Elektronika, 38:3 (2008),  227–232
  14. New possibilities of neodymium-doped vanadate crystals as active media for diode-pumped lasers

    Kvantovaya Elektronika, 37:10 (2007),  938–940
  15. A 913-nm diode-pumped quasi-three-level Nd3+:Gd0.7Y0.3VO4 laser

    Kvantovaya Elektronika, 37:5 (2007),  440–442
  16. Active and passive mode locking in a diode-pumped Nd:Gd0.7Y0.3VO4 laser

    Kvantovaya Elektronika, 37:4 (2007),  315–318
  17. Diode-pumped quasi-three-level 456-nm Nd:GdVO4 laser

    Kvantovaya Elektronika, 33:7 (2003),  651–654
  18. Short-wavelength (λ = 914 nm) microlaser operating on an Nd3+:YVO4 crystal

    Kvantovaya Elektronika, 30:1 (2000),  13–14
  19. Microchip laser based on an Nd3+:GdVO4 crystal

    Kvantovaya Elektronika, 27:1 (1999),  19–20
  20. Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it

    Kvantovaya Elektronika, 27:1 (1999),  16–18
  21. Q-switching in a Cr3+:Yb3+:Ho3+:YSGG crystal laser based on the 5I6 — 5I7 (λ = 2.92 μm) transition

    Kvantovaya Elektronika, 27:1 (1999),  13–15
  22. Tm3+:GdVO4 — a new efficient medium for diode-pumped 2-μm lasers

    Kvantovaya Elektronika, 24:1 (1997),  15–16
  23. Efficient 3-μm Cr3+:Yb3+:Ho3+:YSGG crystal laser

    Kvantovaya Elektronika, 23:9 (1996),  791–792
  24. Cr3+, Yb3+, Ho3+:YSGG crystal laser with a continuously tunable emission wavelength in the range 2.84 — 3.05 μm

    Kvantovaya Elektronika, 23:7 (1996),  579–580
  25. Crystals of Cr3+:Yb3+:Ln3+:YSGG as active media of solid-state lasers

    Kvantovaya Elektronika, 23:5 (1996),  433–437
  26. GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions

    Kvantovaya Elektronika, 22:12 (1995),  1199–1202
  27. Diode pumped Nd3+ : GdVO4 laser with fibre input

    Kvantovaya Elektronika, 22:8 (1995),  788–790
  28. Cascade laser oscillation due to Ho3+ ions in a (Cr,Yb,Ho):YSGG yttrium-scandium-gallium garnet crystal

    Kvantovaya Elektronika, 20:4 (1993),  366–370
  29. Influence of phototropic centers on the efficiency of energy extraction from YSGG:Cr:Nd

    Kvantovaya Elektronika, 17:6 (1990),  723–724
  30. Yttrium scandium gallium garnet laser with a waveguide element activated with Cr3+, Nd3+

    Kvantovaya Elektronika, 16:1 (1989),  28–31
  31. Self-compensation of thermooptic inhomogeneities in pulse-periodic solid state lasers utilizing optically dense active media

    Kvantovaya Elektronika, 15:11 (1988),  2323–2328
  32. $\mathrm{GSGG}$ : $\mathrm{Cr}$ : $\mathrm{Nd}$ laser acousto optic Q-switch under high pumping energies

    Dokl. Akad. Nauk SSSR, 296:2 (1987),  335–337
  33. YSGG:Cr3+:Nd3+ as a new effective medium for pulsed solid-state lasers

    Kvantovaya Elektronika, 14:8 (1987),  1651–1652
  34. On the impurity distribution in front of the growing crystal surface

    Dokl. Akad. Nauk SSSR, 289:4 (1986),  872–875


© Steklov Math. Inst. of RAS, 2024