|
|
Publications in Math-Net.Ru
-
Lie algebras of projective motions of rigid $h$-spaces $H_ {32,3}$ of the type $\{32\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 7, 37–46
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. V. Lie algebras of projective and affine motions of $h$-spaces $H_{221}$ of type $\{221\}$
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216 (2022), 12–28
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. IV. Structure of projective and affine Lie algebras of five-dimensional rigid $h$-spaces
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215 (2022), 18–31
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. III. Curvature forms of five-dimensional rigid $h$-spaces in a skew-normal frame
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 214 (2022), 3–20
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. II. Integration of the Eisenhart equations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022), 10–37
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212 (2022), 10–29
-
Lie algebras of projective motions of five-dimensional $h$-spaces $H_{221}$ of type $\{221\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12, 9–22
-
The General Solution of the Eisenhart Equation
and Projective Motions of Pseudo-Riemannian Manifolds
Mat. Zametki, 107:6 (2020), 803–816
-
On the properties of the projective Lie algebras of rigid $h$-spaces $H_{32}$ of the type $\{32\}$
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 162:2 (2020), 111–119
-
Projective group properties of $h$-spaces of type $\{221\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 10, 87–93
-
On projective motions of five-dimensional spaces of special form
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 5, 97–102
-
The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems
Mat. Sb., 201:5 (2010), 3–16
-
Projective geometry of systems of second-order differential equations
Mat. Sb., 197:7 (2006), 3–28
-
Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 6, 12–27
-
Algebraic conditions for compatibility of two metrics with a common almost complex (quaternion) structure on a manifold
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 7, 70–73
-
Lie algebras of $H$-projective motions of Kähler manifolds of constant holomorphic sectional curvature
Mat. Zametki, 65:6 (1999), 803–809
-
$H$-projective mappings of four-dimensional Kähler manifolds
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 4, 3–14
-
Geodesic structure of four-dimensional P. A. Shirokov spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 7, 3–17
-
Groups of transformations of pseudo-riemannian manifolds in theoretical and mathematical physics
In mem. Lobatschevskii, 3:2 (1995), 79–103
-
Lie algebras of infinitesimal projective transformations of Lorentz manifolds
Uspekhi Mat. Nauk, 50:1(301) (1995), 69–142
-
Projective transformations and symmetries of differential equation
Mat. Sb., 186:12 (1995), 21–36
-
$H$-projectively equivalent four-dimensional Riemannian connections
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 8, 11–20
-
Metric of the Minkowski superspace as an invariant of the Poincaré supergroup
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3, 10–16
-
Automorphisms of geometric structures as symmetries of differential equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 2, 3–10
-
Pseudo–Riemannian manifolds with common geodesies
Uspekhi Mat. Nauk, 48:2(290) (1993), 107–164
-
Projectively equivalent Riemannian connections
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 6, 21–32
-
Lie algebras of projective motions of the spaces $V(K)$ of Lorentz signature
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9, 3–15
-
Transformation groups of Riemannian manifolds
Itogi Nauki i Tekhniki. Ser. Probl. Geom., 22 (1990), 97–165
-
Lie algebras of projective motions of the spaces $V(0)$ of Lorentz signature
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 12, 3–13
-
$K$-spaces and the spaces $V(K)$
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 11, 75–78
-
A Lie problem, projective groups of two-dimensional Riemann surfaces, and solitons
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 6, 3–10
-
Lie algebras of projective motions of $h$-spaces of Lorentz signature
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 1, 3–12
-
Integration of a first-order covariant differential equation and of geodesic mappings of Riemannian spaces of arbitrary signature and dimension
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 1, 3–13
-
Projective-group symmetries of Friedmann universes and of their multidimensional generalizations–symmetries of ordinary $h$-spaces of type $\{1(1\dots 1)\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 12, 66–68
-
Lie algebras of projective motions in $h$-spaces of type $\{3\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 3, 68–71
-
Nonhomothetic projective motions in ordinary $h$h-spaces of Lorentz signature
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 4, 3–13
-
Projective-group properties of Riemannian spaces of Lorentz signature
Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 6, 10–21
-
The Eisenhart equation and first integrals of geodesics on Riemannian manifolds of Lorentz signature
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 1, 12–26
-
A moving skew-orthogonal frame and one type of projective motion of Riemannian manifolds
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 9, 69–74
-
Skew-orthogonal frames and some properties of parallel tensor fields on Riemannian manifolds
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 6, 63–67
-
Groups of almost projective motions of $n$-dimensional (pseudo) Euclidean spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 11, 5–11
-
Groups of almost projective motions of spaces with affine connection
Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 4, 71–75
-
Groups of projective and affine motions in the spaces of general relativity theory. I
Tr. Geom. Sem., 6 (1974), 317–346
-
Projective group properties of certain Riemannian spaces
Tr. Geom. Sem., 6 (1974), 295–316
-
On gravitational fields allowing groups of projective motions
Dokl. Akad. Nauk SSSR, 197:4 (1971), 806–809
-
Leonid Aleksandrovich Aksent'ev
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3, 98–100
-
Aleksei Zinov'evich Petrov (to the 100th anniversary of birthday)
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 153:3 (2011), 6–21
© , 2025