RUS  ENG
Full version
PEOPLE

Aminova Asya Vasilyevna

Publications in Math-Net.Ru

  1. Lie algebras of projective motions of rigid $h$-spaces $H_ {32,3}$ of the type $\{32\}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 7,  37–46
  2. Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. V. Lie algebras of projective and affine motions of $h$-spaces $H_{221}$ of type $\{221\}$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216 (2022),  12–28
  3. Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. IV. Structure of projective and affine Lie algebras of five-dimensional rigid $h$-spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215 (2022),  18–31
  4. Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. III. Curvature forms of five-dimensional rigid $h$-spaces in a skew-normal frame

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 214 (2022),  3–20
  5. Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. II. Integration of the Eisenhart equations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022),  10–37
  6. Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212 (2022),  10–29
  7. Lie algebras of projective motions of five-dimensional $h$-spaces $H_{221}$ of type $\{221\}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12,  9–22
  8. The General Solution of the Eisenhart Equation and Projective Motions of Pseudo-Riemannian Manifolds

    Mat. Zametki, 107:6 (2020),  803–816
  9. On the properties of the projective Lie algebras of rigid $h$-spaces $H_{32}$ of the type $\{32\}$

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 162:2 (2020),  111–119
  10. Projective group properties of $h$-spaces of type $\{221\}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 10,  87–93
  11. On projective motions of five-dimensional spaces of special form

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 5,  97–102
  12. The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems

    Mat. Sb., 201:5 (2010),  3–16
  13. Projective geometry of systems of second-order differential equations

    Mat. Sb., 197:7 (2006),  3–28
  14. Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 6,  12–27
  15. Algebraic conditions for compatibility of two metrics with a common almost complex (quaternion) structure on a manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 7,  70–73
  16. Lie algebras of $H$-projective motions of Kähler manifolds of constant holomorphic sectional curvature

    Mat. Zametki, 65:6 (1999),  803–809
  17. $H$-projective mappings of four-dimensional Kähler manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 4,  3–14
  18. Geodesic structure of four-dimensional P. A. Shirokov spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 7,  3–17
  19. Groups of transformations of pseudo-riemannian manifolds in theoretical and mathematical physics

    In mem. Lobatschevskii, 3:2 (1995),  79–103
  20. Lie algebras of infinitesimal projective transformations of Lorentz manifolds

    Uspekhi Mat. Nauk, 50:1(301) (1995),  69–142
  21. Projective transformations and symmetries of differential equation

    Mat. Sb., 186:12 (1995),  21–36
  22. $H$-projectively equivalent four-dimensional Riemannian connections

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 8,  11–20
  23. Metric of the Minkowski superspace as an invariant of the Poincaré supergroup

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3,  10–16
  24. Automorphisms of geometric structures as symmetries of differential equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 2,  3–10
  25. Pseudo–Riemannian manifolds with common geodesies

    Uspekhi Mat. Nauk, 48:2(290) (1993),  107–164
  26. Projectively equivalent Riemannian connections

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 6,  21–32
  27. Lie algebras of projective motions of the spaces $V(K)$ of Lorentz signature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9,  3–15
  28. Transformation groups of Riemannian manifolds

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 22 (1990),  97–165
  29. Lie algebras of projective motions of the spaces $V(0)$ of Lorentz signature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 12,  3–13
  30. $K$-spaces and the spaces $V(K)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 11,  75–78
  31. A Lie problem, projective groups of two-dimensional Riemann surfaces, and solitons

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 6,  3–10
  32. Lie algebras of projective motions of $h$-spaces of Lorentz signature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 1,  3–12
  33. Integration of a first-order covariant differential equation and of geodesic mappings of Riemannian spaces of arbitrary signature and dimension

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 1,  3–13
  34. Projective-group symmetries of Friedmann universes and of their multidimensional generalizations–symmetries of ordinary $h$-spaces of type $\{1(1\dots 1)\}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 12,  66–68
  35. Lie algebras of projective motions in $h$-spaces of type $\{3\}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 3,  68–71
  36. Nonhomothetic projective motions in ordinary $h$h-spaces of Lorentz signature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 4,  3–13
  37. Projective-group properties of Riemannian spaces of Lorentz signature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 6,  10–21
  38. The Eisenhart equation and first integrals of geodesics on Riemannian manifolds of Lorentz signature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 1,  12–26
  39. A moving skew-orthogonal frame and one type of projective motion of Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 9,  69–74
  40. Skew-orthogonal frames and some properties of parallel tensor fields on Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 6,  63–67
  41. Groups of almost projective motions of $n$-dimensional (pseudo) Euclidean spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 11,  5–11
  42. Groups of almost projective motions of spaces with affine connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 4,  71–75
  43. Groups of projective and affine motions in the spaces of general relativity theory. I

    Tr. Geom. Sem., 6 (1974),  317–346
  44. Projective group properties of certain Riemannian spaces

    Tr. Geom. Sem., 6 (1974),  295–316
  45. On gravitational fields allowing groups of projective motions

    Dokl. Akad. Nauk SSSR, 197:4 (1971),  806–809

  46. Leonid Aleksandrovich Aksent'ev

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  98–100
  47. Aleksei Zinov'evich Petrov (to the 100th anniversary of birthday)

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 153:3 (2011),  6–21


© Steklov Math. Inst. of RAS, 2025