RUS  ENG
Full version
PEOPLE

Radkevich Evgenii Vladimirovich

Publications in Math-Net.Ru

  1. Thermal explosion as a resonance of the combustion process

    Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023),  60–64
  2. Вопросы математического моделирования процесса горения

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  289–327
  3. On the Raushenbakh resonance

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 3,  54–65
  4. Mathematical modeling of vibrational combustion

    Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  69–73
  5. On hydrodynamic instabilities qua nonequilibrium (Cahn–Pillard) phase transitions

    Eurasian Journal of Mathematical and Computer Applications, 7:2 (2019),  20–61
  6. Rayleigh-benard instability: a study by the methods of Cahn–Hillard theory of nonequilibrium phase transitions

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  283–324
  7. Methods of nonlinear dynamics of nonequilibrium processes in fracture mechanics

    Eurasian Journal of Mathematical and Computer Applications, 6:2 (2018),  43–80
  8. Study of the rayleigh-benard instability by methods of the theory of nonequilibrium phase transitions in the cahn-hillard form

    Eurasian Journal of Mathematical and Computer Applications, 5:2 (2017),  36–65
  9. Introduction to the generalized theory of non-equilibrium Cahn-Hilliard phase transitions (Thermodynamic problems in continuum mechanics)

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017),  437–472
  10. On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations

    CMFD, 60 (2016),  23–81
  11. Behavior of stabilizing solutions of the Riccati equation

    Tr. Semim. im. I. G. Petrovskogo, 31 (2016),  110–133
  12. On the reconstruction of the initial stage turbulent diffusion combustion

    Sib. J. Pure and Appl. Math., 16:2 (2016),  50–67
  13. On the inner turbulence paradigm

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015),  155–185
  14. On nonviscous solutions of a multicomponent euler system

    CMFD, 53 (2014),  133–154
  15. Scientific heritage of Vladimir Mikhailovich Millionshchikov

    Tr. Semim. im. I. G. Petrovskogo, 30 (2014),  5–41
  16. On the large-time behavior of solutions to the Cauchy problem for a $2$-dimensional discrete kinetic equation

    CMFD, 47 (2013),  108–139
  17. On problem of nonexistence of dissipative estimate for discrete kinetic equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  106–143
  18. On intermediate attractors

    CMFD, 39 (2011),  79–101
  19. Structurization of the instability zone and crystallization

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  229–265
  20. Matrix Equations and the Chapman–Enskog Projection

    Trudy Mat. Inst. Steklova, 261 (2008),  234–242
  21. Newton's polygon method and the local solvability of free boundary problems

    Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  116–178
  22. On well-posedness of the Cauchy Problem and the Mixed Problem for some class of hyperbolic systems and equations with constant coefficients and variable multiplicity of characteristics

    CMFD, 16 (2006),  110–135
  23. On the properties of the dispersion equations of moment systems for the Fokker–Planck equation

    Differ. Uravn., 42:5 (2006),  610–619
  24. On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity

    Fundam. Prikl. Mat., 12:6 (2006),  85–98
  25. Navier-Stokes approximation and problems of the Chapman-Enskog projection for kinetic equations

    Tr. Semim. im. I. G. Petrovskogo, 25 (2006),  184–225
  26. On the Properties of the Representation of the Boltzmann Kinetic Equation in the Basis of Hermite Functions

    Differ. Uravn., 41:7 (2005),  889–896
  27. Kinetic Equations and the Chapman–Enskog Projection Problem

    Trudy Mat. Inst. Steklova, 250 (2005),  219–225
  28. Well-posedness of mathematical models of continuum mechanics and thermodynamics

    CMFD, 3 (2003),  5–32
  29. Uniform Estimates of Solutions of the Cauchy Problem for Hyperbolic Equations with a Small Parameter Multiplying Higher Derivatives

    Differ. Uravn., 39:4 (2003),  486–499
  30. On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics

    Mat. Zametki, 73:4 (2003),  590–602
  31. The problem of phase transition in a phase field system

    Dokl. Akad. Nauk, 352:6 (1997),  731–734
  32. On capillary waves in unsaturated porous media

    Dokl. Akad. Nauk, 350:5 (1996),  627–631
  33. On the nonperiodic motion that arises during nonlinear wave propagation in saturated porous media

    Dokl. Akad. Nauk, 348:4 (1996),  459–463
  34. Nonlinear triple-wave interactions in saturated porous media

    Prikl. Mekh. Tekh. Fiz., 37:1 (1996),  119–128
  35. On the generation of oscillating enveloping waves in saturated porous media

    Dokl. Akad. Nauk, 345:3 (1995),  393–396
  36. Eigenfrequencies of modulated waves in porous media

    Dokl. Akad. Nauk, 342:3 (1995),  322–325
  37. Asymptotic behavior of the solution of a phase field system, and a modified Stefan problem

    Differ. Uravn., 31:3 (1995),  483–491
  38. On the existence of classical solutions of the problem on swelling of glassy polymers

    Mat. Zametki, 57:6 (1995),  875–888
  39. On regularization of initial conditions of the modified Stefan problem

    Mat. Zametki, 57:5 (1995),  793–795
  40. The existence of a Gibbs random field for systems of particles with impulses

    Uspekhi Mat. Nauk, 50:6(306) (1995),  211–212
  41. Justification of asymptotics of solutions of the phase-field equations and a modified Stefan problem

    Mat. Sb., 186:12 (1995),  63–80
  42. Resonance regimes of wave propagation in a gas-saturated porous medium

    Dokl. Akad. Nauk, 336:6 (1994),  745–749
  43. Slow solitons in a consolidated geological medium

    Dokl. Akad. Nauk, 335:2 (1994),  221–224
  44. A mathematical model of the generation of modulated waves in a gas-saturated porous medium

    Differ. Uravn., 30:4 (1994),  647–658
  45. Modulated waves in the Biot–Nikolaevskii model

    Dokl. Akad. Nauk, 332:4 (1993),  432–435
  46. On the Stefan heat wave

    Dokl. Akad. Nauk, 328:6 (1993),  657–661
  47. Nonsimultaneous resonances in porous media

    Differ. Uravn., 29:12 (1993),  2149–2159
  48. Asymptotic solutions of a phase field system

    Differ. Uravn., 29:3 (1993),  487–500
  49. On the spectrum of the pencil in the Verigin–Muskat problem

    Mat. Sb., 184:9 (1993),  41–88
  50. On the existence of the classical solution of the problem of impregnation of glass-like polymers

    Dokl. Akad. Nauk, 325:4 (1992),  668–673
  51. The dynamic angle problem for the Verigin–Muskat problem

    Dokl. Akad. Nauk, 324:4 (1992),  746–750
  52. The dynamic angle problem for the Gibbs–Thomson law

    Dokl. Akad. Nauk, 323:5 (1992),  841–846
  53. On conditions for the existence of a classical solution of the modified Stefan problem (the Gibbs–Thomson law)

    Mat. Sb., 183:2 (1992),  77–101
  54. Transition zone problems

    Dokl. Akad. Nauk SSSR, 320:3 (1991),  562–566
  55. The Gibbs–Thompson correction and conditions for the existence of a classical solution of the modified Stefan problem

    Dokl. Akad. Nauk SSSR, 316:6 (1991),  1311–1315
  56. Spectrum of the pencil of the Verigin–Macket problem

    Mat. Zametki, 49:3 (1991),  77–90
  57. The spectrum of the pencil of a two-phase Stefan problem

    Dokl. Akad. Nauk SSSR, 314:6 (1990),  1322–1327
  58. Asymptotic expansions of solutions of parabolic boundary value problems with a free boundary

    Dokl. Akad. Nauk SSSR, 314:1 (1990),  118–123
  59. An operator pencil for the Verigin contact problem

    Dokl. Akad. Nauk SSSR, 310:6 (1990),  1303–1307
  60. Operator bundles of the contact Stefan problem

    Mat. Zametki, 47:2 (1990),  89–101
  61. The existence conditions of the classical solution of the contact Stefan problem

    Mat. Sb., 181:4 (1990),  464–489
  62. Solvability of the Stefan contact problem

    Dokl. Akad. Nauk SSSR, 307:1 (1989),  36–41
  63. Conditions for the existence of a transition zone

    Dokl. Akad. Nauk SSSR, 299:6 (1988),  1323–1328
  64. Solvability of contact problems with a free boundary

    Dokl. Akad. Nauk SSSR, 299:1 (1988),  58–62
  65. On the solvability of general nonstationary problems with a free boundary

    Dokl. Akad. Nauk SSSR, 288:5 (1986),  1094–1099
  66. The solvability of a two-phase quasistationary problem of crystallization

    Dokl. Akad. Nauk SSSR, 265:1 (1982),  58–62
  67. On conditions for the existence of a stationary fresh water lens in the presence of infiltration

    Dokl. Akad. Nauk SSSR, 263:1 (1982),  40–44
  68. Numerical realization of the boundary-variation method in stationary-filtration problems

    Dokl. Akad. Nauk SSSR, 261:2 (1981),  329–333
  69. Boundary-variation method in problems involving a stationary fresh-water lens

    Dokl. Akad. Nauk SSSR, 258:3 (1981),  586–589
  70. The boundary variation method in problems of filtration in porous media

    Sibirsk. Mat. Zh., 22:5 (1981),  158–177
  71. Boundary-variation method in Pozzi–Friedman problems

    Dokl. Akad. Nauk SSSR, 255:4 (1980),  839–843
  72. Method of variation of the boundary in nonstationary filtering

    Dokl. Akad. Nauk SSSR, 250:6 (1980),  1359–1363
  73. On the filtration problem in a porous non-homogeneous non-isotropic medium

    Uspekhi Mat. Nauk, 35:1(211) (1980),  213–214
  74. On an approach to the solution of problems in filtration theory

    Dokl. Akad. Nauk SSSR, 249:6 (1979),  1321–1324
  75. The method of introducing a parameter in the study of evolutionary equations

    Uspekhi Mat. Nauk, 33:5(203) (1978),  7–76
  76. The complex wave front in the problem of analyticity of solutions of linear partial differential equations

    Dokl. Akad. Nauk SSSR, 233:4 (1977),  559–562
  77. A theorem on a removable singularity for the solutions of a class of linear partial differential equations

    Uspekhi Mat. Nauk, 32:4(196) (1977),  265–266
  78. On the behavior of solutions of general parabolic systems of differential equations in unbounded domains

    Dokl. Akad. Nauk SSSR, 220:5 (1975),  1027–1030
  79. Analyticity and theorems of Liouville and Phragmen–Lindelöf type for general parabolic systems of differential equations

    Funktsional. Anal. i Prilozhen., 8:4 (1974),  59–70
  80. Conditions for the existence of nonanalytic solutions of linear partial differential equations of arbitrary order

    Tr. Mosk. Mat. Obs., 31 (1974),  17–33
  81. Conditions for the analyticity of all solutions of a second order linear equation

    Uspekhi Mat. Nauk, 29:3(177) (1974),  221–222
  82. Analyticity and theorems of Liouville and Phragmén–Lindelöf type for general elliptic systems of differential equations

    Mat. Sb. (N.S.), 95(137):1(9) (1974),  130–145
  83. The behavior at infinity of the solutions of certain systems of partial differential equations

    Uspekhi Mat. Nauk, 28:5(173) (1973),  249–250
  84. Estimates for the eigenfunctions and solutions of certain systems of partial differential equations that depend on a parameter

    Uspekhi Mat. Nauk, 28:4(172) (1973),  223–224
  85. A certain class of linear differential equations that have nonanalytic solutions

    Uspekhi Mat. Nauk, 28:3(171) (1973),  191–192
  86. On the analyticity of solutions of linear partial differential equations

    Mat. Sb. (N.S.), 90(132):4 (1973),  592–606
  87. Analyticity of solutions of linear differential equations and systems

    Dokl. Akad. Nauk SSSR, 207:4 (1972),  785–788
  88. The analyticity of the solutions of a certain class of second order hypoelliptic equations

    Uspekhi Mat. Nauk, 27:6(168) (1972),  241–242
  89. Systems of differential equations that have nonanalytic solutions

    Uspekhi Mat. Nauk, 27:5(167) (1972),  247–248
  90. Second order equations with nonnegative characteristic form

    Itogi Nauki. Ser. Matematika. Mat. Anal. 1969, 1971,  7–252
  91. On local smoothness of generalized and hypoellipticity of second order differential equations

    Uspekhi Mat. Nauk, 26:2(158) (1971),  265–281
  92. A priori estimates and hypoelliptic operators with multiple characteristics

    Dokl. Akad. Nauk SSSR, 187:2 (1969),  274–277
  93. The smoothness of solutions of the first boundary value problem for second order differential equations with a non-negative characteristic form

    Uspekhi Mat. Nauk, 24:3(147) (1969),  233–234
  94. On a theorem of L. Hörmander

    Uspekhi Mat. Nauk, 24:2(146) (1969),  233–234
  95. A Schauder type estimate for a certain class of pseudo-differential operators

    Uspekhi Mat. Nauk, 24:1(145) (1969),  199–200
  96. Hypoelliptic operators with multiple characteristics

    Mat. Sb. (N.S.), 79(121):2(6) (1969),  193–216

  97. К 70-летию Валерия Васильевича Козлова

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  3–7
  98. Vasilii Vasilievich Zhikov

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  5–7
  99. Alexander Kozhanov (to the $60^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14,  187–189
  100. Vladimir Alexandrovich Kondratiev. July 2, 1935 – March 11, 2010

    CMFD, 39 (2011),  5–10
  101. Olga Arsenjevna Oleinik

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  5–7
  102. In Memory of Anatoliy A. Kilbas

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  6–9
  103. Leonid Romanovich Volevich (obituary)

    Uspekhi Mat. Nauk, 62:6(378) (2007),  157–160
  104. Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth

    Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  5–28
  105. Vladimir Aleksandrovich Kondrat'ev (A Tribute in Honor of His 70th Birthday)

    Differ. Uravn., 41:7 (2005),  867–873
  106. Vladimir Aleksandrovich Kondrat'ev

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 5,  77–79
  107. Ol'ga Arsen'evna Oleinik (obituary)

    Uspekhi Mat. Nauk, 58:1(349) (2003),  165–174


© Steklov Math. Inst. of RAS, 2024