RUS  ENG
Full version
PEOPLE

Polovinkin Evgenii Sergeevich

Publications in Math-Net.Ru

  1. Properties of the distance function to strongly and weakly convex sets in a nonsymmetrical space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5,  22–38
  2. On the continuous dependence of trajectories of a differential inclusion on initial approximations

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:1 (2019),  174–195
  3. Pontryagin's Direct Method for Optimization Problems with Differential Inclusion

    Trudy Mat. Inst. Steklova, 304 (2019),  257–272
  4. On some properties of vector measures

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  175–188
  5. Differential inclusions with unbounded right-hand side and necessary optimality conditions

    Trudy Mat. Inst. Steklova, 291 (2015),  249–265
  6. Subdifferentials for the difference of two convex functions

    Fundam. Prikl. Mat., 19:5 (2014),  167–184
  7. On a Consequence of the Schauder Theorem

    Mat. Zametki, 96:6 (2014),  953–954
  8. On a Counterexample in Analysis

    Mat. Zametki, 95:1 (2014),  123–128
  9. On the weak polar cone of the solution set of a differential inclusion with conic graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  238–246
  10. On Relationship between Derivative of Multifunction and Its Support Function

    Izv. Saratov Univ. Math. Mech. Inform., 13:1(1) (2013),  13–21
  11. Differential inclusions with measurable-pseudo-Lipschitz right-hand side

    Trudy Mat. Inst. Steklova, 283 (2013),  121–141
  12. A Generalization of the Set Averaging Theorem

    Mat. Zametki, 92:3 (2012),  410–416
  13. On the calculation of the polar cone of the solution set of a differential inclusion

    Trudy Mat. Inst. Steklova, 278 (2012),  178–187
  14. On construction of bodies of constant width containing a given set

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  215–225
  15. The addition of subsets to constant width bodies

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:2 (2006),  132–143
  16. An algorithm for the numerical solution of linear differential games

    Mat. Sb., 192:10 (2001),  95–122
  17. $M$-strongly convex subsets and their generating sets

    Mat. Sb., 191:1 (2000),  27–64
  18. On strongly convex sets and strongly convex functions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 61 (1999),  66–138
  19. On convex and strongly convex approximations of sets

    Dokl. Akad. Nauk, 350:3 (1996),  308–311
  20. Strongly convex analysis

    Mat. Sb., 187:2 (1996),  103–130
  21. Second-order convergence of an algorithm calculating the value of linear differential games

    Dokl. Akad. Nauk, 340:2 (1995),  151–154
  22. On strongly convex differential games

    Differ. Uravn., 31:10 (1995),  1641–1648
  23. Necessary conditions for an optimization problem with a differential inclusion

    Trudy Mat. Inst. Steklov., 211 (1995),  387–400
  24. Differentiation of multivalued mappings and properties of solutions of differential inclusions

    Dokl. Akad. Nauk SSSR, 288:2 (1986),  296–301
  25. Time-optimal problem for differential inclusions

    Differ. Uravn., 22:8 (1986),  1351–1365
  26. An approach to differentiation of multivalued mappings, and necessary conditions for optimality of solutions of differential inclusions

    Differ. Uravn., 22:6 (1986),  944–954
  27. Stability of a terminal set and optimality of pursuit time in differential games

    Differ. Uravn., 20:3 (1984),  433–446
  28. The integration of multivalued mappings

    Dokl. Akad. Nauk SSSR, 271:5 (1983),  1069–1074
  29. On two types of operators for biparametric equations

    Dokl. Akad. Nauk SSSR, 254:1 (1980),  20–24
  30. A linear differential game with a simple matrix

    Differ. Uravn., 16:8 (1980),  1360–1369
  31. Nonautonomous differential games

    Differ. Uravn., 15:6 (1979),  1007–1017

  32. Vladimir Mikhaĭlovich Tikhomirov (on the occasion of his seventieth birthday)

    Vladikavkaz. Mat. Zh., 6:4 (2004),  3–6


© Steklov Math. Inst. of RAS, 2024