RUS  ENG
Full version
PEOPLE

Tuzhilin Alexey Avgustinovich

Publications in Math-Net.Ru

  1. Action of similarity transformations on families of metric spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 223 (2023),  3–13
  2. Calculation of the Gromov–Hausdorff distance using the Borsuk number

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1,  33–38
  3. Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class

    Mat. Sb., 213:10 (2022),  90–107
  4. Geometry of the Gromov-Hausdorff distance on the class of all metric spaces

    Mat. Sb., 213:5 (2022),  68–87
  5. The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric

    Mat. Sb., 212:1 (2021),  28–62
  6. Gromov–Hausdorff distances to simplexes and some applications to discrete optimisation

    Chebyshevskii Sb., 21:2 (2020),  169–189
  7. Hausdorff realization of linear geodesics in the Gromov–Hausdorff space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020),  33–38
  8. The Gromov–Hausdorff distances to simplexes

    Chebyshevskii Sb., 20:2 (2019),  108–122
  9. Компьютерные модели в геометрии и динамике

    Intelligent systems. Theory and applications, 21:1 (2017),  164–191
  10. Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  152–161
  11. Analytic deformations of minimal networks

    Fundam. Prikl. Mat., 21:5 (2016),  159–180
  12. The Gromov–Hausdorff Metric on the Space of Compact Metric Spaces is Strictly Intrinsic

    Mat. Zametki, 100:6 (2016),  947–950
  13. Analyzing the data bank of proteins' space structures (PDB): a geometrical approach

    Fundam. Prikl. Mat., 20:3 (2015),  33–46
  14. Minimal spanning trees on infinite sets

    Fundam. Prikl. Mat., 20:2 (2015),  89–103
  15. Stabilization of a locally minimal forest

    Mat. Sb., 205:3 (2014),  83–118
  16. The geometry of inner spanning trees for planar polygons

    Izv. RAN. Ser. Mat., 76:2 (2012),  3–36
  17. The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges

    Mat. Zametki, 91:3 (2012),  353–370
  18. One-dimensional Gromov minimal filling problem

    Mat. Sb., 203:5 (2012),  65–118
  19. One-dimensional minimal fillings with negative edge weights

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 5,  3–8
  20. Generalized Maxwell formula for the length of a minimal tree with a given topology

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 3,  7–14
  21. Computer modeling of curves and surfaces

    Fundam. Prikl. Mat., 15:5 (2009),  63–94
  22. Stabilization of Locally Minimal Trees

    Mat. Zametki, 86:4 (2009),  512–524
  23. Immersed polygons and their diagonal triangulations

    Izv. RAN. Ser. Mat., 72:1 (2008),  67–98
  24. Uniqueness of Steiner minimal trees on boundaries in general position

    Mat. Sb., 197:9 (2006),  55–90
  25. Sets admitting connection by graphs of finite length

    Mat. Sb., 196:6 (2005),  71–110
  26. Steiner Ratio for Manifolds

    Mat. Zametki, 74:3 (2003),  387–395
  27. Branching geodesics in normed spaces

    Izv. RAN. Ser. Mat., 66:5 (2002),  33–82
  28. Melzak's algorithm for phylogenetic spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 3,  22–28
  29. Nontrivial Critical Networks. Singularities of Lagrangians and a Criterion for Criticality

    Mat. Zametki, 69:4 (2001),  566–580
  30. Differential calculus on the space of Steiner minimal trees in Riemannian manifolds

    Mat. Sb., 192:6 (2001),  31–50
  31. Planar Manhattan local minimal and critical networks

    Zap. Nauchn. Sem. POMI, 279 (2001),  111–140
  32. Steiner ratio for Riemannian manifolds

    Uspekhi Mat. Nauk, 55:6(336) (2000),  139–140
  33. The space of parallel linear networks with a fixed boundary

    Izv. RAN. Ser. Mat., 63:5 (1999),  83–126
  34. Geometry of convex polygons and locally minimal binary trees spanning these polygons

    Mat. Sb., 190:1 (1999),  69–108
  35. Linear nets and convex polyhedra

    Zap. Nauchn. Sem. POMI, 252 (1998),  52–61
  36. The geometry of minimal networks with a given topology and a fixed boundary

    Izv. RAN. Ser. Mat., 61:6 (1997),  119–152
  37. Minimal binary trees with a regular boundary: The case of skeletons with five endpoints

    Mat. Zametki, 61:6 (1997),  907–921
  38. Complete classification of local minimal binary trees with regular boundaries. The case of skeletons

    Fundam. Prikl. Mat., 2:2 (1996),  511–562
  39. The classification of minimal skeletons with a regular boundary

    Uspekhi Mat. Nauk, 51:4(310) (1996),  157–158
  40. Structure of the set of planar minimal networks with given topology and boundary

    Uspekhi Mat. Nauk, 51:3(309) (1996),  201–202
  41. The geometry of plane linear trees

    Uspekhi Mat. Nauk, 51:2(308) (1996),  161–162
  42. On minimal binary trees with a regular boundary

    Uspekhi Mat. Nauk, 51:1(307) (1996),  139–140
  43. The twist number of planar linear trees

    Mat. Sb., 187:8 (1996),  41–92
  44. Minimal binary trees with regular boundary: the case of sceletons with four ends

    Mat. Sb., 187:4 (1996),  117–159
  45. Weighted minimal binary trees

    Uspekhi Mat. Nauk, 50:3(303) (1995),  155–156
  46. Topologies of locally minimal planar binary trees

    Uspekhi Mat. Nauk, 49:6(300) (1994),  191–192
  47. Minimal networks on regular polygons: realization of linear tilingsMinimal networks on regular polygons: realization of linear tilings

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 6,  77–80
  48. Geometry of minimal networks and the one-dimensional Plateau problem

    Uspekhi Mat. Nauk, 47:2(284) (1992),  53–115
  49. Classification of closed minimal networks on flat two-dimensional tori

    Mat. Sb., 183:12 (1992),  3–44
  50. On the index of minimal surfaces

    Trudy Mat. Inst. Steklov., 193 (1992),  183–188
  51. Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$

    Izv. Akad. Nauk SSSR Ser. Mat., 55:3 (1991),  581–607
  52. The Steiner problem in the plane or in plane minimal nets

    Mat. Sb., 182:12 (1991),  1813–1844
  53. Solution of the Steiner problem for convex boundaries

    Uspekhi Mat. Nauk, 45:2(272) (1990),  207–208
  54. Deformation of a manifold that decreases volume at maximum rate

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 3,  14–18
  55. Multivalued mappings, minimal surfaces, and soap films

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 3,  3–12

  56. Anatolii Timofeevich Fomenko

    Chebyshevskii Sb., 21:2 (2020),  5–7
  57. Academician Anatolii Timofeevich Fomenko

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 6,  66–68


© Steklov Math. Inst. of RAS, 2024