|
|
Publications in Math-Net.Ru
-
Action of similarity transformations on families of metric spaces
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 223 (2023), 3–13
-
Calculation of the Gromov–Hausdorff distance using the Borsuk number
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1, 33–38
-
Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class
Mat. Sb., 213:10 (2022), 90–107
-
Geometry of the Gromov-Hausdorff distance on the class of all metric spaces
Mat. Sb., 213:5 (2022), 68–87
-
The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric
Mat. Sb., 212:1 (2021), 28–62
-
Gromov–Hausdorff distances to simplexes and some applications to discrete optimisation
Chebyshevskii Sb., 21:2 (2020), 169–189
-
Hausdorff realization of linear geodesics in the Gromov–Hausdorff space
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020), 33–38
-
The Gromov–Hausdorff distances to simplexes
Chebyshevskii Sb., 20:2 (2019), 108–122
-
Компьютерные модели в геометрии и динамике
Intelligent systems. Theory and applications, 21:1 (2017), 164–191
-
Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces
Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017), 152–161
-
Analytic deformations of minimal networks
Fundam. Prikl. Mat., 21:5 (2016), 159–180
-
The Gromov–Hausdorff Metric on the Space of Compact Metric Spaces is Strictly Intrinsic
Mat. Zametki, 100:6 (2016), 947–950
-
Analyzing the data bank of proteins' space structures (PDB): a geometrical approach
Fundam. Prikl. Mat., 20:3 (2015), 33–46
-
Minimal spanning trees on infinite sets
Fundam. Prikl. Mat., 20:2 (2015), 89–103
-
Stabilization of a locally minimal forest
Mat. Sb., 205:3 (2014), 83–118
-
The geometry of inner spanning trees for planar polygons
Izv. RAN. Ser. Mat., 76:2 (2012), 3–36
-
The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges
Mat. Zametki, 91:3 (2012), 353–370
-
One-dimensional Gromov minimal filling problem
Mat. Sb., 203:5 (2012), 65–118
-
One-dimensional minimal fillings with negative edge weights
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 5, 3–8
-
Generalized Maxwell formula for the length of a minimal tree with a given topology
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 3, 7–14
-
Computer modeling of curves and surfaces
Fundam. Prikl. Mat., 15:5 (2009), 63–94
-
Stabilization of Locally Minimal Trees
Mat. Zametki, 86:4 (2009), 512–524
-
Immersed polygons and their diagonal triangulations
Izv. RAN. Ser. Mat., 72:1 (2008), 67–98
-
Uniqueness of Steiner minimal trees on boundaries
in general position
Mat. Sb., 197:9 (2006), 55–90
-
Sets admitting connection by graphs of finite length
Mat. Sb., 196:6 (2005), 71–110
-
Steiner Ratio for Manifolds
Mat. Zametki, 74:3 (2003), 387–395
-
Branching geodesics in normed spaces
Izv. RAN. Ser. Mat., 66:5 (2002), 33–82
-
Melzak's algorithm for phylogenetic spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 3, 22–28
-
Nontrivial Critical Networks. Singularities of Lagrangians and a Criterion for Criticality
Mat. Zametki, 69:4 (2001), 566–580
-
Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
Mat. Sb., 192:6 (2001), 31–50
-
Planar Manhattan local minimal and critical networks
Zap. Nauchn. Sem. POMI, 279 (2001), 111–140
-
Steiner ratio for Riemannian manifolds
Uspekhi Mat. Nauk, 55:6(336) (2000), 139–140
-
The space of parallel linear networks with a fixed boundary
Izv. RAN. Ser. Mat., 63:5 (1999), 83–126
-
Geometry of convex polygons and locally minimal binary trees spanning these polygons
Mat. Sb., 190:1 (1999), 69–108
-
Linear nets and convex polyhedra
Zap. Nauchn. Sem. POMI, 252 (1998), 52–61
-
The geometry of minimal networks with a given topology and a fixed boundary
Izv. RAN. Ser. Mat., 61:6 (1997), 119–152
-
Minimal binary trees with a regular boundary: The case of skeletons with five endpoints
Mat. Zametki, 61:6 (1997), 907–921
-
Complete classification of local minimal binary trees with regular boundaries. The case of skeletons
Fundam. Prikl. Mat., 2:2 (1996), 511–562
-
The classification of minimal skeletons with a regular boundary
Uspekhi Mat. Nauk, 51:4(310) (1996), 157–158
-
Structure of the set of planar minimal networks with given topology and boundary
Uspekhi Mat. Nauk, 51:3(309) (1996), 201–202
-
The geometry of plane linear trees
Uspekhi Mat. Nauk, 51:2(308) (1996), 161–162
-
On minimal binary trees with a regular boundary
Uspekhi Mat. Nauk, 51:1(307) (1996), 139–140
-
The twist number of planar linear trees
Mat. Sb., 187:8 (1996), 41–92
-
Minimal binary trees with regular boundary: the case of sceletons with four ends
Mat. Sb., 187:4 (1996), 117–159
-
Weighted minimal binary trees
Uspekhi Mat. Nauk, 50:3(303) (1995), 155–156
-
Topologies of locally minimal planar binary trees
Uspekhi Mat. Nauk, 49:6(300) (1994), 191–192
-
Minimal networks on regular polygons: realization of linear tilingsMinimal networks on regular polygons: realization of linear tilings
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 6, 77–80
-
Geometry of minimal networks and the one-dimensional Plateau problem
Uspekhi Mat. Nauk, 47:2(284) (1992), 53–115
-
Classification of closed minimal networks on flat two-dimensional tori
Mat. Sb., 183:12 (1992), 3–44
-
On the index of minimal surfaces
Trudy Mat. Inst. Steklov., 193 (1992), 183–188
-
Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$
Izv. Akad. Nauk SSSR Ser. Mat., 55:3 (1991), 581–607
-
The Steiner problem in the plane or in plane minimal nets
Mat. Sb., 182:12 (1991), 1813–1844
-
Solution of the Steiner problem for convex boundaries
Uspekhi Mat. Nauk, 45:2(272) (1990), 207–208
-
Deformation of a manifold that decreases volume at maximum rate
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 3, 14–18
-
Multivalued mappings, minimal surfaces, and soap films
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 3, 3–12
-
Anatolii Timofeevich Fomenko
Chebyshevskii Sb., 21:2 (2020), 5–7
-
Academician Anatolii Timofeevich Fomenko
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 6, 66–68
© , 2024