RUS  ENG
Full version
PEOPLE

Zagidullin Marsel' Vakifovich

Publications in Math-Net.Ru

  1. Mechanism of formation of four-ring polycyclic aromatic hydrocarbons in the self-recombination of indenyl

    Fizika Goreniya i Vzryva, 59:2 (2023),  31–39
  2. Dissociation of iodine molecules and singlet oxygen generation in O2–I2 mixture induced by 1315-nm laser radiation

    Kvantovaya Elektronika, 47:10 (2017),  932–934
  3. Experimental results on the dissociation of molecular iodine in the presence of singlet oxygen molecules

    Kvantovaya Elektronika, 46:8 (2016),  706–712
  4. Kinetics of an oxygen-iodine active medium with iodine atoms optically pumped on the 2P1/22P3/2 transition

    Kvantovaya Elektronika, 45:8 (2015),  720–724
  5. Kinetics of O2(1Σ) formation in the reaction O2(1Δ) + O2(1Δ) → O2(1Σ) + O2(3Σ)

    Kvantovaya Elektronika, 41:2 (2011),  135–138
  6. Kinetics of O2(1Δ) self-quenching in the O2 — O2(1Δ) — H2O gas mixture

    Kvantovaya Elektronika, 40:9 (2010),  800–803
  7. Nonequilibrium population of the first vibrational level of O2(1Σ) molecules in O2 — O2(1Δ) — H2O gas flow at the output of chemical singlet-oxygen generator

    Kvantovaya Elektronika, 40:9 (2010),  794–799
  8. Centrifugal bubble O2 (1Δ) gas generator with a total pressure of 100 Torr

    Kvantovaya Elektronika, 38:8 (2008),  794–800
  9. Oxygen—iodine ejector laser with a centrifugal bubbling singlet-oxygen generator

    Kvantovaya Elektronika, 35:10 (2005),  907–908
  10. Effect of the solution temperature in a singlet-oxygen generator on the formation of active medium in an ejector oxygen — iodine laser

    Kvantovaya Elektronika, 32:2 (2002),  101–106
  11. Amplification and gas-dynamic parameters of the active oxygen–iodine medium produced by an ejector nozzle unit

    Kvantovaya Elektronika, 31:8 (2001),  678–682
  12. Calculation of the mixing chamber of an ejector chemical oxygen – iodine laser

    Kvantovaya Elektronika, 31:6 (2001),  510–514
  13. Temperature dependence of the collision broadening of the 2P1/22P3/2 line of atomic iodine

    Kvantovaya Elektronika, 31:4 (2001),  373–376
  14. Efficient chemical oxygen – iodine laser with a high total pressure of the active medium

    Kvantovaya Elektronika, 31:1 (2001),  30–34
  15. Supersonic oxygen — iodine 1.4-kW laser with a 5 cm gain length and a nitrogen-diluted active medium

    Kvantovaya Elektronika, 30:2 (2000),  161–166
  16. Efficient chemical oxygen–iodine laser with longitudinal flow of the active medium

    Kvantovaya Elektronika, 26:2 (1999),  114–116
  17. Comparative characteristics of subsonic and supersonic oxygen–iodine lasers

    Kvantovaya Elektronika, 25:5 (1998),  413–415
  18. Chemical oxygen — iodine laser with mixing of supersonic jets

    Kvantovaya Elektronika, 24:6 (1997),  491–494
  19. Gain saturation and the efficiency of energy conversion into radiation in a supersonic oxygen — iodine laserwith a stable cavity

    Kvantovaya Elektronika, 24:5 (1997),  423–428
  20. Highly efficient supersonic chemical oxygen — iodine laser with a chlorine flow rate of 10 mmol s–1

    Kvantovaya Elektronika, 24:3 (1997),  201–205
  21. Oxygen–iodine laser with a drop-jet generator of O2(1Δ) operating at pressures up to 90 Torr

    Kvantovaya Elektronika, 22:5 (1995),  443–445
  22. Transport of high-pressure O2 (1Δ)

    Kvantovaya Elektronika, 21:3 (1994),  247–249
  23. Jet O2(#delta_1#) generator with oxygen pressures up to 13.3 kPa

    Kvantovaya Elektronika, 21:2 (1994),  129–132
  24. Compact oxygen-iodine laser with a thermally insulated jet singlet–oxygen generator

    Kvantovaya Elektronika, 21:1 (1994),  23–24
  25. An oxygen–iodine laser utilizing a high-pressure O2 (1Δ) generator

    Kvantovaya Elektronika, 18:12 (1991),  1417–1418
  26. Highly efficient jet O2 (1Δ) generator

    Kvantovaya Elektronika, 18:7 (1991),  826–832
  27. Investigation of a jet generator of O2(1Δ)

    Kvantovaya Elektronika, 16:11 (1989),  2197–2200
  28. Control of the duration of optical pulses from an oxygen–iodine chemical laser

    Kvantovaya Elektronika, 16:4 (1989),  722–727
  29. Relaxation of the energy stored in an oxygen–iodine active medium containing bound iodine

    Kvantovaya Elektronika, 15:10 (1988),  2078–2086
  30. Theoretical analysis of the kinetics of a laser utilizing a mixture of O2(1Δ) and an iodine aerosol

    Kvantovaya Elektronika, 15:1 (1988),  70–77
  31. Water vapor content in the active medium of an oxygen–iodine chemical laser

    Kvantovaya Elektronika, 14:3 (1987),  516–523
  32. Active medium utilizing a mixture of O2(1Δ) and an iodine aerosol

    Kvantovaya Elektronika, 14:3 (1987),  509–515
  33. Active medium of a chemical oxygen-iodine laser

    Kvantovaya Elektronika, 13:4 (1986),  787–796
  34. Kinetics of saturation of the active medium of an oxygen-iodine laser

    Kvantovaya Elektronika, 11:7 (1984),  1379–1389
  35. Influence of translational and hyperfine relaxation on the energy characteristics of an oxygen-iodine laser

    Kvantovaya Elektronika, 11:2 (1984),  382–385
  36. Advantages of pulsed operation of a chemical oxygen-iodine laser

    Kvantovaya Elektronika, 11:1 (1984),  201–203
  37. Possibility of using an atomizer in a chemical generator of singlet oxygen for an oxygen–iodine laser

    Kvantovaya Elektronika, 10:4 (1983),  797–802
  38. Possibility of operation of a chemical oxygen–iodine laser without a cooled trap

    Kvantovaya Elektronika, 10:1 (1983),  131–132
  39. Numerical modeling of a chemical oxygen–iodine laser

    Kvantovaya Elektronika, 9:9 (1982),  1899–1901
  40. Analysis of the energetics of a chemical oxygen–iodine laser

    Kvantovaya Elektronika, 9:6 (1982),  1193–1198


© Steklov Math. Inst. of RAS, 2024