RUS  ENG
Full version
PEOPLE

Miklyukov Vladimir Mikhailovich

Publications in Math-Net.Ru

  1. Some conditions for the existence of a total differential at a point

    Mat. Sb., 201:8 (2010),  45–62
  2. Some conditions for the existence of the total differential

    Sibirsk. Mat. Zh., 51:4 (2010),  805–814
  3. On Harnack's inequality for almost solutions of elliptic equations

    Izv. RAN. Ser. Mat., 73:5 (2009),  171–180
  4. Îöåíêè ðàçìåðîâ çîíû ñòàãíàöèè ïî÷òè ðåøåíèé óðàâíåíèé ïàðàáîëè÷åñêîãî òèïà

    Sib. Zh. Ind. Mat., 11:3 (2008),  96–101
  5. Maximum principle for difference of almost solutions of elliptic equations

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2007, no. 1,  33–45
  6. A “weak” theorem of Phragmén-Lindelöf type for the difference of solutions of the equation of gas dynamics

    Sib. Zh. Ind. Mat., 9:3 (2006),  90–101
  7. $A$-Solutions with singularities as almost solutions

    Mat. Sb., 197:11 (2006),  31–50
  8. Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions

    Funktsional. Anal. i Prilozhen., 39:3 (2005),  28–36
  9. Isothermic coordinates on singular surfaces

    Mat. Sb., 195:1 (2004),  69–88
  10. On quasiconformally flat surfaces in Riemannian manifolds

    Izv. RAN. Ser. Mat., 67:5 (2003),  83–106
  11. Stagnation Zones of Solutions to the Laplace–Beltrami Equation in Long Strips

    Mat. Tr., 5:1 (2002),  84–101
  12. Boundary properties of solutions of equations of minimal surface kind

    Mat. Sb., 192:10 (2001),  71–94
  13. The Phragmen–Lindelöf principle for quasiregular mappings of manifolds and the isoperimetry

    Dokl. Akad. Nauk, 347:3 (1996),  303–305
  14. Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces

    Izv. RAN. Ser. Mat., 60:4 (1996),  111–158
  15. Criteria of instability of surfaces of zero mean curvature in warped Lorentz products

    Mat. Sb., 187:11 (1996),  67–88
  16. Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products

    Izv. RAN. Ser. Mat., 58:3 (1994),  196–210
  17. A capacity condition for the instability of minimal hypersurfaces

    Dokl. Akad. Nauk, 330:4 (1993),  424–426
  18. Existence of solutions with singularities for the maximal surface equation in Minkowski space

    Mat. Sb., 184:9 (1993),  103–124
  19. On a Lorentz-invariant characteristic of maximal tubes in the Minkowski space

    Dokl. Akad. Nauk, 322:2 (1992),  233–236
  20. Maximal tubes and bands in Minkowski space

    Mat. Sb., 183:12 (1992),  45–76
  21. Traces of functions with spacelike graphs, and the extension problem under restrictions on the gradient

    Mat. Sb., 183:7 (1992),  49–64
  22. Singularity sets for solutions to equations of maximal surfaces in Minkowski space

    Sibirsk. Mat. Zh., 33:6 (1992),  131–140
  23. Space-like hypersurfaces and a problem on the continuation of a function with constraints on the gradient

    Dokl. Akad. Nauk SSSR, 320:4 (1991),  781–784
  24. Maximal tubular hypersurfaces in Minkowski space

    Izv. Akad. Nauk SSSR Ser. Mat., 55:1 (1991),  206–217
  25. Some properties of the tubular minimal surfaces of arbitrary codimension

    Mat. Sb., 180:9 (1989),  1278–1295
  26. The structure in the large of externally complete minimal surfaces in $R^3$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 7,  30–36
  27. Extrinsic dimensions of tubular minimal hypersurfaces

    Mat. Sb. (N.S.), 131(173):2(10) (1986),  240–250
  28. Some asymptotic properties of subsolutions of equations of minimal surface type

    Sibirsk. Mat. Zh., 23:1 (1982),  25–31
  29. On the structure of level sets and the growth of subsolutions of equations of elliptic type

    Uspekhi Mat. Nauk, 36:1(217) (1981),  213–214
  30. Some singularities in the behavior of solutions of equations of minimal-surface type in unbounded domains

    Mat. Sb. (N.S.), 116(158):1(9) (1981),  72–86
  31. Capacity and a generalized maximum principle for quasilinear elliptic equations

    Dokl. Akad. Nauk SSSR, 250:6 (1980),  1318–1320
  32. On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion

    Mat. Sb. (N.S.), 111(153):1 (1980),  42–66
  33. A theorem of Phragmén–Lindelöf-type for $n$-dimensional mappings with bounded distortion

    Sibirsk. Mat. Zh., 21:2 (1980),  232–235
  34. On some properties of tubular minimal surfaces in $R^n$

    Dokl. Akad. Nauk SSSR, 247:3 (1979),  549–552
  35. An estimate of the modulus of a family of curves on a minimal surface, and applications

    Uspekhi Mat. Nauk, 34:3(207) (1979),  207–208
  36. On a new approach to Bernstein's theorem and related questions for equations of minimal surface type

    Mat. Sb. (N.S.), 108(150):2 (1979),  268–289
  37. On the conformal type of surfaces, Liouville's theorem and Bernstein's theorem

    Dokl. Akad. Nauk SSSR, 242:3 (1978),  537–540
  38. Two theorems on boundary properties of minimal surfaces in nonparametric form

    Mat. Zametki, 21:4 (1977),  551–556
  39. Some boundary value problems of the theory of conformal mappings

    Sibirsk. Mat. Zh., 18:5 (1977),  1111–1124
  40. Some estimates for a conformal mapping of a region onto a strip

    Dokl. Akad. Nauk SSSR, 223:2 (1975),  295–297
  41. Some properties of conformal and quasiconformal mappings and direct theorems of the constructive theory of functions

    Dokl. Akad. Nauk SSSR, 214:3 (1974),  492–495
  42. Some properties of conformal and quasiconformal mappings and direct theorems of the constructive theory of functions

    Izv. Akad. Nauk SSSR Ser. Mat., 38:6 (1974),  1343–1361
  43. Boundary property of $n$-dimensional mappings with bounded distortion

    Mat. Zametki, 11:2 (1972),  159–164
  44. Boundary properties of $n$-dimensional quasiconformal mappings

    Dokl. Akad. Nauk SSSR, 193:3 (1970),  525–527
  45. Removable singularities of quasiconformal mappings in space

    Dokl. Akad. Nauk SSSR, 188:3 (1969),  525–527
  46. The $\varepsilon$-quasiconformal mappings of a ball onto a ball

    Dokl. Akad. Nauk SSSR, 187:4 (1969),  734–735
  47. Certain classes of mappings on the plane

    Dokl. Akad. Nauk SSSR, 183:4 (1968),  772–774
  48. The oriented quasiconformal mappings in space

    Dokl. Akad. Nauk SSSR, 182:2 (1968),  266–267


© Steklov Math. Inst. of RAS, 2024