RUS  ENG
Full version
PEOPLE

Makhnev Aleksandr Alekseevich

Publications in Math-Net.Ru

  1. On distance regular graphs with diameter $3$ and degree $44$

    Proceedings of the Institute of Mathematics of the NAS of Belarus, 32:1 (2024),  57–63
  2. Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$

    Ural Math. J., 10:1 (2024),  76–83
  3. On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$

    Vladikavkaz. Mat. Zh., 26:3 (2024),  47–55
  4. Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  207–210
  5. On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  279–282
  6. On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$

    Diskr. Mat., 34:1 (2022),  76–87
  7. The Koolen-Park bound and distance-regular graphs without $m$-clavs

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9,  64–69
  8. On distance-regular graphs of diameter $3$ with eigenvalue $0$

    Mat. Tr., 25:2 (2022),  162–173
  9. On $Q$-polynomial Shilla graphs with $b = 4$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  176–186
  10. Open problems formulated at the International Algebraic Conference Dedicated to the 90th Anniversary of A. I. Starostin

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  269–275
  11. Inverse Problems in the Class of Distance-Regular Graphs of Diameter $4$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  199–208
  12. On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$

    Ural Math. J., 8:2 (2022),  127–132
  13. On $Q$-polynomial Shilla graphs with $b=6$

    Vladikavkaz. Mat. Zh., 24:2 (2022),  117–123
  14. On nonexistence of distance regular graphs with the intersection array $\{53,40,28,16;1,4,10,28\}$

    Diskretn. Anal. Issled. Oper., 28:3 (2021),  38–48
  15. Three infinite families of Shilla graphs do not exist

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  45–50
  16. On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph

    Diskr. Mat., 33:4 (2021),  61–67
  17. Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$

    Mat. Zametki, 109:2 (2021),  247–256
  18. Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1075–1082
  19. Inverse problems of graph theory: graphs without triangles

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  27–42
  20. On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  146–156
  21. Shilla graphs with $b = 5$ and $b = 6$

    Ural Math. J., 7:2 (2021),  51–58
  22. Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist

    Vladikavkaz. Mat. Zh., 23:4 (2021),  68–76
  23. Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist

    Vladikavkaz. Mat. Zh., 23:2 (2021),  65–69
  24. Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$

    Algebra Logika, 59:5 (2020),  567–581
  25. The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$

    Algebra Logika, 59:4 (2020),  471–479
  26. Antipodal Krein graphs and distance-regular graphs close to them

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  54–57
  27. On distance-regular graphs with $c_2=2$

    Diskr. Mat., 32:1 (2020),  74–80
  28. The nonexistence small $Q$-polynomial graphs of type (III)

    Sib. Èlektron. Mat. Izv., 17 (2020),  1270–1279
  29. Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  23–31
  30. Inverse problems in the class of Q-polynomial graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  14–22
  31. Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist

    Ural Math. J., 6:2 (2020),  63–67
  32. Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$

    Vladikavkaz. Mat. Zh., 22:2 (2020),  24–33
  33. A Shilla graph with Intersection Array $\{12,10,2;1,2,8\}$ Does not Exist

    Mat. Zametki, 106:5 (2019),  797–800
  34. Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1547–1552
  35. On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1385–1392
  36. Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist

    Sib. Èlektron. Mat. Izv., 16 (2019),  1254–1259
  37. On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  777–785
  38. On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  638–647
  39. Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  493–500
  40. Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist

    Sib. Èlektron. Mat. Izv., 16 (2019),  206–216
  41. Nonexistence of certain Q-polynomial distance-regular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  136–141
  42. Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  44–51
  43. On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$

    Vladikavkaz. Mat. Zh., 21:2 (2019),  27–37
  44. Edge-symmetric distance-regular coverings of complete graphs: the almost simple case

    Algebra Logika, 57:2 (2018),  214–231
  45. Distance-Regular Shilla Graphs with $b_2=c_2$

    Mat. Zametki, 103:5 (2018),  730–744
  46. Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist

    Sib. Èlektron. Mat. Izv., 15 (2018),  1506–1512
  47. Inverse problems of graph theory: generalized quadrangles

    Sib. Èlektron. Mat. Izv., 15 (2018),  927–934
  48. Automorphisms of graph with intersection array $\{232,198,1;1, 33,232\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  650–657
  49. Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  603–611
  50. On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  198–204
  51. On automorphisms of a distance-regular graph with intersection array $\{96,76,1;1,19,96\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  167–174
  52. Small vertex-symmetric Higman graphs with $\mu=6$

    Sib. Èlektron. Mat. Izv., 15 (2018),  54–59
  53. Inverse problems in distance-regular graphs theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  133–144
  54. Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  173–184
  55. Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$

    Ural Math. J., 4:2 (2018),  69–78
  56. On automorphisms of a strongly regular graph with parameters $(117,36,15,9)$

    Vladikavkaz. Mat. Zh., 20:4 (2018),  43–49
  57. Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$

    Algebra Logika, 56:6 (2017),  671–681
  58. Automorphism groups of small distance-regular graphs

    Algebra Logika, 56:4 (2017),  395–405
  59. On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$

    Diskr. Mat., 29:1 (2017),  10–16
  60. Automorphisms of the $AT4(6,6,3)$-graph and its strongly-regular graphs

    J. Sib. Fed. Univ. Math. Phys., 10:3 (2017),  271–280
  61. Automorphisms of Graphs with Intersection Arrays $\{60,45,8;1,12,50\}$ and $\{49,36,8;1,6,42\}$

    Mat. Zametki, 101:6 (2017),  823–831
  62. Vertex-transitive semi-triangular graphs with $\mu=7$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1198–1206
  63. To the theory of Shilla graphs with $b_2=c_2$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1135–1146
  64. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1064–1077
  65. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$

    Sib. Èlektron. Mat. Izv., 14 (2017),  856–863
  66. Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  232–242
  67. On automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  182–190
  68. Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$

    Ural Math. J., 3:1 (2017),  27–32
  69. On automorphisms of a distance-regular graph with intersection array $\{125,96,1;1,48,125\}$

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:1 (2017),  13–20
  70. On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$

    Vladikavkaz. Mat. Zh., 19:2 (2017),  11–17
  71. Arc-transitive antipodal distance-regular graphs of diameter three related to $PSL_d(q)$

    Sib. Èlektron. Mat. Izv., 13 (2016),  1339–1345
  72. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  1040–1051
  73. Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  972–986
  74. Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  754–761
  75. Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  130–136
  76. Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$

    Tr. Inst. Mat., 24:2 (2016),  91–97
  77. Graphs in which local subgraphs are strongly regular with second eigenvalue 5

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  188–200
  78. On graphs in which neighborhoods of vertices are strongly regular with parameters (85,14,3,2) or (325,54,3,10)

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  137–143
  79. On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  28–37
  80. Small $AT4$-graphs and strongly regular subgraphs corresponding to them

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  220–230
  81. On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  212–219
  82. Extensions of pseudogeometric graphs for $pG_{s-5}(s,t)$

    Vladikavkaz. Mat. Zh., 18:3 (2016),  35–42
  83. Electronic Raman scattering and the electron-phonon interaction in YB$_6$

    Pis'ma v Zh. Èksper. Teoret. Fiz., 102:8 (2015),  565–570
  84. Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$

    Sib. Èlektron. Mat. Izv., 12 (2015),  930–939
  85. On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$

    Sib. Èlektron. Mat. Izv., 12 (2015),  802–809
  86. Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$

    Sib. Èlektron. Mat. Izv., 12 (2015),  795–801
  87. Strongly regular graphs with nonprincipal eigenvalue 4 and its extensions

    Tr. Inst. Mat., 23:2 (2015),  82–87
  88. On extensions of strongly regular graphs with eigenvalue 4

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  233–255
  89. Strongly uniform extensions of dual 2-designs

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  35–45
  90. Automorphisms of a strongly regular graph with parameters $(1197,156,15,21)$

    Vladikavkaz. Mat. Zh., 17:2 (2015),  5–11
  91. Extensions of pseudo-geometric graphs of the partial geometries $pG_{s-4}(s,t)$

    Vladikavkaz. Mat. Zh., 17:1 (2015),  21–30
  92. On distance-regular graphs with $\lambda=2$

    J. Sib. Fed. Univ. Math. Phys., 7:2 (2014),  204–210
  93. Automorphisms of Higman graphs with $\mu=6$

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  184–209
  94. On extensions of exceptional strongly regular graphs with eigenvalue 3

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  169–184
  95. On strongly regular graphs with $b_1<26$

    Diskr. Mat., 25:3 (2013),  22–32
  96. Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist

    Diskr. Mat., 25:2 (2013),  13–30
  97. Edge-symmetric distance-regular coverings of cliques: The affine case

    Sibirsk. Mat. Zh., 54:6 (2013),  1353–1367
  98. Exceptional strongly regular graphs with eigenvalue 3

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  167–174
  99. On strongly regular graphs with eigenvalue $\mu$ and their extensions

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  207–214
  100. Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  237–246
  101. On automorphisms of strongly regular graphs with parameters $(320,99,18,36)$

    Vladikavkaz. Mat. Zh., 15:2 (2013),  58–68
  102. An automorphism group of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$

    Algebra Logika, 51:4 (2012),  476–495
  103. Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  155–163
  104. On automorphisms of a distance-regular graph with intersection array $\{35,32,8;1,2,28\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  235–241
  105. On completely regular graphs with $k=11, $ $\lambda=4$

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  83–92
  106. On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman–Singleton Graph

    Mat. Zametki, 89:5 (2011),  673–685
  107. On almost good triples of vertices in edge regular graphs

    Sibirsk. Mat. Zh., 52:4 (2011),  745–753
  108. On automorphisms of a strongly regular graph with parameters $(210,95,40,45)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  199–208
  109. On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  189–198
  110. On graphs the neighbourhoods of whose verticesare pseudo-geometric graphs for $GQ(3,3)$

    Tr. Inst. Mat., 18:1 (2010),  28–35
  111. On automorphisms of a strongly regular graph with parameters (76,35,18,14)

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  185–194
  112. On strongly regular graphs with eigenvalue 2 and their extensions

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  105–116
  113. On automorphisms of a strongly regular graph with parameters (64,35,18,20)

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  96–104
  114. On automorphisms of 4-isoregular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  78–87
  115. On amply regular graphs with $k=10$, $\lambda=3$

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  75–90
  116. Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  35–47
  117. On automorphisms of strongly regular graphs with parameters $(243,66,9,21)$

    Vladikavkaz. Mat. Zh., 12:4 (2010),  49–59
  118. On automorphisms of strongly regular graph with parameters $(396,135,30,54)$

    Vladikavkaz. Mat. Zh., 12:3 (2010),  30–40
  119. On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$

    Algebra i Analiz, 21:5 (2009),  138–154
  120. On automorphisms of distance-regular graphs

    Fundam. Prikl. Mat., 15:1 (2009),  65–79
  121. Amply Regular Graphs with $b_1=6$

    J. Sib. Fed. Univ. Math. Phys., 2:1 (2009),  63–77
  122. Automorphisms of Coverings of Strongly Regular Graphs with Parameters (81,20,1,6)

    Mat. Zametki, 86:1 (2009),  22–36
  123. On the automorphism group of the Aschbacher graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  162–176
  124. Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  143–161
  125. Оn automorphisms of the generalized hexagon of order (3,27)

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  34–44
  126. Об автоморфизмах сильно регулярного графа с параметрами $(95,40,12,20)$

    Vladikavkaz. Mat. Zh., 11:4 (2009),  44–58
  127. On edge-regular graphs with $b_1=5$

    Vladikavkaz. Mat. Zh., 11:1 (2009),  29–42
  128. Automorphisms of Terwilliger graphs with $\mu=2$

    Algebra Logika, 47:5 (2008),  584–600
  129. On Automorphisms of a Generalized Octagon of Order $(2,4)$

    Mat. Zametki, 84:4 (2008),  516–526
  130. Strongly regular locally $GQ(4,t)$-graphs

    Sibirsk. Mat. Zh., 49:1 (2008),  161–182
  131. Completely regular graphs with $\mu\le k-2b_1+3$

    Tr. Inst. Mat., 16:1 (2008),  28–39
  132. О хороших парах вершин в реберно регулярных графах с $k=3b_1-1$

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  119–134
  133. Графы без 3-корон с некоторыми условиями регулярности

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  53–69
  134. Edge-regular graphs in which every vertex lies in at most one good pair

    Vladikavkaz. Mat. Zh., 10:1 (2008),  53–67
  135. Terwilliger Graphs with $\mu\le3$

    Mat. Zametki, 82:1 (2007),  14–26
  136. A new estimate for the vertex number of an edge-regular graph

    Sibirsk. Mat. Zh., 48:4 (2007),  817–832
  137. Об автоморфизмах дистанционно регулярного графа с массивом пересечений $\{60,45,8;1,12,50\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007),  41–53
  138. Uniform extensions of partial geometries

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  148–157
  139. A distance-regular graph with the intersection array $\{8,7,5;1,1,4\}$ and its automorphisms

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  44–56
  140. On edge-regular graphs with $k\ge 3b_1-3$

    Algebra i Analiz, 18:4 (2006),  10–38
  141. Slender partial quadrangles and their automorphisms

    Algebra Logika, 45:5 (2006),  603–619
  142. Amply regular graphs and block designs

    Sibirsk. Mat. Zh., 47:4 (2006),  753–768
  143. On local $GQ(s,t)$ graphs with strongly regular $\mu$-subgraphs

    Algebra i Analiz, 17:3 (2005),  93–106
  144. Automorphisms of Strongly Regular Krein Graphs without Triangles

    Algebra Logika, 44:3 (2005),  335–354
  145. On a class of coedge regular graphs

    Izv. RAN. Ser. Mat., 69:6 (2005),  95–114
  146. On automorphisms of strongly regular graphs with the parameters $\lambda=1$ and $\mu=2$

    Diskr. Mat., 16:1 (2004),  95–104
  147. On the strong regularity of some edge-regular graphs

    Izv. RAN. Ser. Mat., 68:1 (2004),  159–182
  148. On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$

    Mat. Sb., 195:3 (2004),  47–68
  149. On good pairs in edge-regular graphs

    Diskr. Mat., 15:1 (2003),  77–97
  150. On Crown-Free Graphs with Regular $\mu$-Subgraphs, II

    Mat. Zametki, 74:3 (2003),  396–406
  151. Ovoids and Bipartite Subgraphs in Generalized Quadrangles

    Mat. Zametki, 73:6 (2003),  878–885
  152. On pseudogeometrical graphs for some partial geometries

    Fundam. Prikl. Mat., 8:1 (2002),  117–127
  153. On strongly regular graphs with $k=2\mu$ and their extensions

    Sibirsk. Mat. Zh., 43:3 (2002),  609–619
  154. Automorphisms of Aschbacher Graphs

    Algebra Logika, 40:2 (2001),  125–134
  155. Extensions of $\mathit{GQ}(4,2)$, the completely regular case

    Diskr. Mat., 13:3 (2001),  91–109
  156. Pseudodual grids and extensions of generalized quadrangles

    Sibirsk. Mat. Zh., 42:5 (2001),  1117–1124
  157. On the graphs with $µ$-subgraphs isomorphic to $K_{u\times 2}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001),  215–224
  158. Pseudo-geometric graphs of the partial geometries $pG_2(4,t)$

    Diskr. Mat., 12:1 (2000),  113–134
  159. On strongly regular graphs with parameters $(75,32,10,16)$ and $(95,40,12,20)$

    Fundam. Prikl. Mat., 6:1 (2000),  179–193
  160. Affine ovoids and extensions of generalized quadrangles

    Mat. Zametki, 68:2 (2000),  266–271
  161. $GQ(4,2)$-extensions, strongly regular case

    Mat. Zametki, 68:1 (2000),  113–119
  162. On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$

    Mat. Sb., 191:7 (2000),  89–104
  163. Partial geometries and their extensions

    Uspekhi Mat. Nauk, 54:5(329) (1999),  25–76
  164. On the structure of connected locally $GQ(3,9)$-graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 5:2 (1998),  61–77
  165. Locally $GQ(3,5)$-graphs and geometries with short lines

    Diskr. Mat., 10:2 (1998),  72–86
  166. On a class of graphs without 3-stars

    Mat. Zametki, 63:3 (1998),  407–413
  167. Locally Shrikhande graphs and their automorphisms

    Sibirsk. Mat. Zh., 39:5 (1998),  1085–1097
  168. Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals

    Diskr. Mat., 9:3 (1997),  101–116
  169. On 2-locally Seidel graphs

    Izv. RAN. Ser. Mat., 61:4 (1997),  67–80
  170. Characterization of a class of edge-regular graphs

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 1,  22–27
  171. On extensions of partial geometries containing small $\mu$-subgraphs

    Diskretn. Anal. Issled. Oper., 3:3 (1996),  71–83
  172. О сильно регулярных расширениях обобщенных четырехугольников с короткими прямыми

    Diskr. Mat., 8:3 (1996),  31–39
  173. Coedge regular graphs without 3-stars

    Mat. Zametki, 60:4 (1996),  495–503
  174. On separated graphs with certain regularity conditions

    Mat. Sb., 187:10 (1996),  73–86
  175. On pseudogeometric graphs of the partial geometries $pG_2(4,t)$

    Mat. Sb., 187:7 (1996),  97–112
  176. On regular Terwilliger graphs with $\mu=2$

    Sibirsk. Mat. Zh., 37:5 (1996),  1132–1134
  177. On regular graphs in which each edge lies in the largest number of triangles

    Diskretn. Anal. Issled. Oper., 2:4 (1995),  42–53
  178. On a strongly regular graph with the parameters $(64,18,2,6)$

    Diskr. Mat., 7:3 (1995),  121–128
  179. Cyclic TI-subgroups of order 4 in exceptional Chevalley groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  41–49
  180. Finite locally-$GQ(3,3)$ graphs

    Sibirsk. Mat. Zh., 35:6 (1994),  1314–1324
  181. Strongly regular locally latticed graphs

    Diskr. Mat., 5:4 (1993),  145–150
  182. On strongly regular extensions of generalized quadrangles

    Mat. Sb., 184:12 (1993),  123–132
  183. Tightly embedded subgroups with abelian fusion

    Trudy Inst. Mat. i Mekh. UrO RAN, 2 (1992),  19–26
  184. A reduction theorem for TIsubgroups

    Izv. Akad. Nauk SSSR Ser. Mat., 55:2 (1991),  303–317
  185. Strongly regular graphs with $\lambda=1$

    Mat. Zametki, 44:5 (1988),  667–672
  186. Finite groups of $2$-local $3$-rank $1$

    Sibirsk. Mat. Zh., 29:6 (1988),  100–110
  187. Groups with triangular classes of involutions

    Sibirsk. Mat. Zh., 29:2 (1988),  204–205
  188. On $TI$-subgroups of finite groups

    Izv. Akad. Nauk SSSR Ser. Mat., 50:1 (1986),  22–36
  189. Finite groups

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 24 (1986),  3–120
  190. $3$-characterizations of finite groups

    Algebra Logika, 24:2 (1985),  173–180
  191. Finite groups with a centralizer of order $6$

    Dokl. Akad. Nauk SSSR, 284:6 (1985),  1312–1313
  192. Finite simple groups with a standard subgroup of the type $L_3(4)$

    Mat. Zametki, 37:1 (1985),  7–12
  193. $TI$-subgroups in groups of characteristic 2 type

    Mat. Sb. (N.S.), 127(169):2(6) (1985),  239–244
  194. Finite groups containing thin $2$-local subgroups

    Sibirsk. Mat. Zh., 26:5 (1985),  99–110
  195. A characterization of the Tits simple group

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 4 (1984),  28–49
  196. Finite groups with a self-normalizing subgroup of order 6. II

    Algebra Logika, 22:5 (1983),  518–525
  197. On tightly embedded subgroups of finite groups

    Mat. Sb. (N.S.), 121(163):4(8) (1983),  523–532
  198. Finite groups with bounded involution centralizer

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 10,  8–14
  199. Elementary $TI$-subgroups of finite groups

    Mat. Zametki, 30:2 (1981),  179–184
  200. Finite groups with a noninvariant four-core

    Sibirsk. Mat. Zh., 22:2 (1981),  212–214
  201. Finite groups with a sixth-order centralizer. II

    Algebra Logika, 19:2 (1980),  214–223
  202. Finite groups with a self-normalizing subgroup of order six

    Algebra Logika, 19:1 (1980),  91–102
  203. On the generation of finite groups by classes of involutions

    Mat. Sb. (N.S.), 111(153):2 (1980),  266–278
  204. A generalization of Prince's theorem

    Sibirsk. Mat. Zh., 19:1 (1978),  100–107
  205. Finite groups with a sixth order centralizer

    Algebra Logika, 16:4 (1977),  432–442
  206. Groups with a centralizer of sixth order

    Mat. Zametki, 22:1 (1977),  153–159
  207. Finite groups with normal intersections of Sylow $2$-subgroups

    Algebra Logika, 15:6 (1976),  655–659

  208. To the 65-th anniversary of prof. A. G. Kusraev

    Vladikavkaz. Mat. Zh., 20:2 (2018),  111–119
  209. Koibaev Vladimir Amurkhanovich (on his 60th birthday)

    Vladikavkaz. Mat. Zh., 17:2 (2015),  68–70
  210. Ivan Ivanovich Eremin

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  5–12
  211. On the 100th birthday of Sergei Nikolaevich Chernikov

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  5–9
  212. International conference on “Algebra and geometry” dedicated to the 80th birthday A. I. Starostin

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  321–325
  213. To the 75th anniversary of academician of Russian Academy of Sciences Yu. S. Osipov

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  5–6
  214. School-Conference on Group Theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  222–225
  215. On the collaboration of Siberian and Ural mathematicians

    Sib. Èlektron. Mat. Izv., 4 (2007),  22–27
  216. International Conference on group theory deducated to the memory of S. N. Chernikov

    Uspekhi Mat. Nauk, 53:4(322) (1998),  223
  217. IV School on the Theory of Finite Groups

    Uspekhi Mat. Nauk, 40:1(241) (1985),  241–243


© Steklov Math. Inst. of RAS, 2025