|
|
Publications in Math-Net.Ru
-
On distance regular graphs with diameter $3$ and degree $44$
Proceedings of the Institute of Mathematics of the NAS of Belarus, 32:1 (2024), 57–63
-
Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$
Ural Math. J., 10:1 (2024), 76–83
-
On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$
Vladikavkaz. Mat. Zh., 26:3 (2024), 47–55
-
Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist
Sib. Èlektron. Mat. Izv., 20:1 (2023), 207–210
-
On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws
Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023), 279–282
-
On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$
Diskr. Mat., 34:1 (2022), 76–87
-
The Koolen-Park bound and distance-regular graphs without $m$-clavs
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9, 64–69
-
On distance-regular graphs of diameter $3$ with eigenvalue $0$
Mat. Tr., 25:2 (2022), 162–173
-
On $Q$-polynomial Shilla graphs with $b = 4$
Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022), 176–186
-
Open problems formulated at the International Algebraic Conference Dedicated to the 90th Anniversary of A. I. Starostin
Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 269–275
-
Inverse Problems in the Class of Distance-Regular Graphs of Diameter $4$
Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 199–208
-
On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$
Ural Math. J., 8:2 (2022), 127–132
-
On $Q$-polynomial Shilla graphs with $b=6$
Vladikavkaz. Mat. Zh., 24:2 (2022), 117–123
-
On nonexistence of distance regular graphs with the intersection array $\{53,40,28,16;1,4,10,28\}$
Diskretn. Anal. Issled. Oper., 28:3 (2021), 38–48
-
Three infinite families of Shilla graphs do not exist
Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 45–50
-
On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph
Diskr. Mat., 33:4 (2021), 61–67
-
Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$
Mat. Zametki, 109:2 (2021), 247–256
-
Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1075–1082
-
Inverse problems of graph theory: graphs without triangles
Sib. Èlektron. Mat. Izv., 18:1 (2021), 27–42
-
On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 146–156
-
Shilla graphs with $b = 5$ and $b = 6$
Ural Math. J., 7:2 (2021), 51–58
-
Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist
Vladikavkaz. Mat. Zh., 23:4 (2021), 68–76
-
Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist
Vladikavkaz. Mat. Zh., 23:2 (2021), 65–69
-
Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
Algebra Logika, 59:5 (2020), 567–581
-
The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$
Algebra Logika, 59:4 (2020), 471–479
-
Antipodal Krein graphs and distance-regular graphs close to them
Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 54–57
-
On distance-regular graphs with $c_2=2$
Diskr. Mat., 32:1 (2020), 74–80
-
The nonexistence small $Q$-polynomial graphs of type (III)
Sib. Èlektron. Mat. Izv., 17 (2020), 1270–1279
-
Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 23–31
-
Inverse problems in the class of Q-polynomial graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 14–22
-
Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist
Ural Math. J., 6:2 (2020), 63–67
-
Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$
Vladikavkaz. Mat. Zh., 22:2 (2020), 24–33
-
A Shilla graph with Intersection Array $\{12,10,2;1,2,8\}$ Does not Exist
Mat. Zametki, 106:5 (2019), 797–800
-
Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$
Sib. Èlektron. Mat. Izv., 16 (2019), 1547–1552
-
On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
Sib. Èlektron. Mat. Izv., 16 (2019), 1385–1392
-
Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist
Sib. Èlektron. Mat. Izv., 16 (2019), 1254–1259
-
On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$
Sib. Èlektron. Mat. Izv., 16 (2019), 777–785
-
On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$
Sib. Èlektron. Mat. Izv., 16 (2019), 638–647
-
Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$
Sib. Èlektron. Mat. Izv., 16 (2019), 493–500
-
Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist
Sib. Èlektron. Mat. Izv., 16 (2019), 206–216
-
Nonexistence of certain Q-polynomial distance-regular graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 136–141
-
Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs
Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 44–51
-
On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$
Vladikavkaz. Mat. Zh., 21:2 (2019), 27–37
-
Edge-symmetric distance-regular coverings of complete graphs: the almost simple case
Algebra Logika, 57:2 (2018), 214–231
-
Distance-Regular Shilla Graphs with $b_2=c_2$
Mat. Zametki, 103:5 (2018), 730–744
-
Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist
Sib. Èlektron. Mat. Izv., 15 (2018), 1506–1512
-
Inverse problems of graph theory: generalized quadrangles
Sib. Èlektron. Mat. Izv., 15 (2018), 927–934
-
Automorphisms of graph with intersection array $\{232,198,1;1, 33,232\}$
Sib. Èlektron. Mat. Izv., 15 (2018), 650–657
-
Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$
Sib. Èlektron. Mat. Izv., 15 (2018), 603–611
-
On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$
Sib. Èlektron. Mat. Izv., 15 (2018), 198–204
-
On automorphisms of a distance-regular graph with intersection array $\{96,76,1;1,19,96\}$
Sib. Èlektron. Mat. Izv., 15 (2018), 167–174
-
Small vertex-symmetric Higman graphs with $\mu=6$
Sib. Èlektron. Mat. Izv., 15 (2018), 54–59
-
Inverse problems in distance-regular graphs theory
Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 133–144
-
Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}
Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018), 173–184
-
Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
Ural Math. J., 4:2 (2018), 69–78
-
On automorphisms of a strongly regular graph with parameters $(117,36,15,9)$
Vladikavkaz. Mat. Zh., 20:4 (2018), 43–49
-
Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$
Algebra Logika, 56:6 (2017), 671–681
-
Automorphism groups of small distance-regular graphs
Algebra Logika, 56:4 (2017), 395–405
-
On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$
Diskr. Mat., 29:1 (2017), 10–16
-
Automorphisms of the $AT4(6,6,3)$-graph and its strongly-regular graphs
J. Sib. Fed. Univ. Math. Phys., 10:3 (2017), 271–280
-
Automorphisms of Graphs with Intersection Arrays $\{60,45,8;1,12,50\}$ and $\{49,36,8;1,6,42\}$
Mat. Zametki, 101:6 (2017), 823–831
-
Vertex-transitive semi-triangular graphs with $\mu=7$
Sib. Èlektron. Mat. Izv., 14 (2017), 1198–1206
-
To the theory of Shilla graphs with $b_2=c_2$
Sib. Èlektron. Mat. Izv., 14 (2017), 1135–1146
-
Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
Sib. Èlektron. Mat. Izv., 14 (2017), 1064–1077
-
Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
Sib. Èlektron. Mat. Izv., 14 (2017), 856–863
-
Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$
Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017), 232–242
-
On automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}
Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 182–190
-
Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$
Ural Math. J., 3:1 (2017), 27–32
-
On automorphisms of a distance-regular graph with intersection array $\{125,96,1;1,48,125\}$
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:1 (2017), 13–20
-
On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$
Vladikavkaz. Mat. Zh., 19:2 (2017), 11–17
-
Arc-transitive antipodal distance-regular graphs of diameter three related to $PSL_d(q)$
Sib. Èlektron. Mat. Izv., 13 (2016), 1339–1345
-
On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$
Sib. Èlektron. Mat. Izv., 13 (2016), 1040–1051
-
Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$
Sib. Èlektron. Mat. Izv., 13 (2016), 972–986
-
Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$
Sib. Èlektron. Mat. Izv., 13 (2016), 754–761
-
Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$
Sib. Èlektron. Mat. Izv., 13 (2016), 130–136
-
Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$
Tr. Inst. Mat., 24:2 (2016), 91–97
-
Graphs in which local subgraphs are strongly regular with second eigenvalue 5
Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 188–200
-
On graphs in which neighborhoods of vertices are strongly regular with parameters (85,14,3,2) or (325,54,3,10)
Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 137–143
-
On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016), 28–37
-
Small $AT4$-graphs and strongly regular subgraphs corresponding to them
Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 220–230
-
On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 212–219
-
Extensions of pseudogeometric graphs for $pG_{s-5}(s,t)$
Vladikavkaz. Mat. Zh., 18:3 (2016), 35–42
-
Electronic Raman scattering and the electron-phonon interaction in YB$_6$
Pis'ma v Zh. Èksper. Teoret. Fiz., 102:8 (2015), 565–570
-
Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$
Sib. Èlektron. Mat. Izv., 12 (2015), 930–939
-
On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$
Sib. Èlektron. Mat. Izv., 12 (2015), 802–809
-
Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$
Sib. Èlektron. Mat. Izv., 12 (2015), 795–801
-
Strongly regular graphs with nonprincipal eigenvalue 4 and its extensions
Tr. Inst. Mat., 23:2 (2015), 82–87
-
On extensions of strongly regular graphs with eigenvalue 4
Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 233–255
-
Strongly uniform extensions of dual 2-designs
Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 35–45
-
Automorphisms of a strongly regular graph with parameters $(1197,156,15,21)$
Vladikavkaz. Mat. Zh., 17:2 (2015), 5–11
-
Extensions of pseudo-geometric graphs of the partial geometries $pG_{s-4}(s,t)$
Vladikavkaz. Mat. Zh., 17:1 (2015), 21–30
-
On distance-regular graphs with $\lambda=2$
J. Sib. Fed. Univ. Math. Phys., 7:2 (2014), 204–210
-
Automorphisms of Higman graphs with $\mu=6$
Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 184–209
-
On extensions of exceptional strongly regular graphs with eigenvalue 3
Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 169–184
-
On strongly regular graphs with $b_1<26$
Diskr. Mat., 25:3 (2013), 22–32
-
Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist
Diskr. Mat., 25:2 (2013), 13–30
-
Edge-symmetric distance-regular coverings of cliques: The affine case
Sibirsk. Mat. Zh., 54:6 (2013), 1353–1367
-
Exceptional strongly regular graphs with eigenvalue 3
Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013), 167–174
-
On strongly regular graphs with eigenvalue $\mu$ and their extensions
Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013), 207–214
-
Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$
Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013), 237–246
-
On automorphisms of strongly regular graphs with parameters $(320,99,18,36)$
Vladikavkaz. Mat. Zh., 15:2 (2013), 58–68
-
An automorphism group of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$
Algebra Logika, 51:4 (2012), 476–495
-
Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 155–163
-
On automorphisms of a distance-regular graph with intersection array $\{35,32,8;1,2,28\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012), 235–241
-
On completely regular graphs with $k=11, $ $\lambda=4$
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 83–92
-
On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman–Singleton Graph
Mat. Zametki, 89:5 (2011), 673–685
-
On almost good triples of vertices in edge regular graphs
Sibirsk. Mat. Zh., 52:4 (2011), 745–753
-
On automorphisms of a strongly regular graph with parameters $(210,95,40,45)$
Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 199–208
-
On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph
Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 189–198
-
On graphs the neighbourhoods of whose verticesare pseudo-geometric graphs for $GQ(3,3)$
Tr. Inst. Mat., 18:1 (2010), 28–35
-
On automorphisms of a strongly regular graph with parameters (76,35,18,14)
Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 185–194
-
On strongly regular graphs with eigenvalue 2 and their extensions
Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 105–116
-
On automorphisms of a strongly regular graph with parameters (64,35,18,20)
Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 96–104
-
On automorphisms of 4-isoregular graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 78–87
-
On amply regular graphs with $k=10$, $\lambda=3$
Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010), 75–90
-
Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph
Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010), 35–47
-
On automorphisms of strongly regular graphs with parameters $(243,66,9,21)$
Vladikavkaz. Mat. Zh., 12:4 (2010), 49–59
-
On automorphisms of strongly regular graph with parameters $(396,135,30,54)$
Vladikavkaz. Mat. Zh., 12:3 (2010), 30–40
-
On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$
Algebra i Analiz, 21:5 (2009), 138–154
-
On automorphisms of distance-regular graphs
Fundam. Prikl. Mat., 15:1 (2009), 65–79
-
Amply Regular Graphs with $b_1=6$
J. Sib. Fed. Univ. Math. Phys., 2:1 (2009), 63–77
-
Automorphisms of Coverings of Strongly Regular Graphs with Parameters (81,20,1,6)
Mat. Zametki, 86:1 (2009), 22–36
-
On the automorphism group of the Aschbacher graph
Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 162–176
-
Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph
Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 143–161
-
Оn automorphisms of the generalized hexagon of order (3,27)
Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 34–44
-
Об автоморфизмах сильно регулярного графа с параметрами $(95,40,12,20)$
Vladikavkaz. Mat. Zh., 11:4 (2009), 44–58
-
On edge-regular graphs with $b_1=5$
Vladikavkaz. Mat. Zh., 11:1 (2009), 29–42
-
Automorphisms of Terwilliger graphs with $\mu=2$
Algebra Logika, 47:5 (2008), 584–600
-
On Automorphisms of a Generalized Octagon of Order $(2,4)$
Mat. Zametki, 84:4 (2008), 516–526
-
Strongly regular locally $GQ(4,t)$-graphs
Sibirsk. Mat. Zh., 49:1 (2008), 161–182
-
Completely regular graphs with $\mu\le k-2b_1+3$
Tr. Inst. Mat., 16:1 (2008), 28–39
-
О хороших парах вершин в реберно регулярных графах с $k=3b_1-1$
Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008), 119–134
-
Графы без 3-корон с некоторыми условиями регулярности
Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008), 53–69
-
Edge-regular graphs in which every vertex lies in at most one good pair
Vladikavkaz. Mat. Zh., 10:1 (2008), 53–67
-
Terwilliger Graphs with $\mu\le3$
Mat. Zametki, 82:1 (2007), 14–26
-
A new estimate for the vertex number of an edge-regular graph
Sibirsk. Mat. Zh., 48:4 (2007), 817–832
-
Об автоморфизмах дистанционно регулярного графа с массивом пересечений $\{60,45,8;1,12,50\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007), 41–53
-
Uniform extensions of partial geometries
Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007), 148–157
-
A distance-regular graph with the intersection array $\{8,7,5;1,1,4\}$ and its automorphisms
Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007), 44–56
-
On edge-regular graphs with $k\ge 3b_1-3$
Algebra i Analiz, 18:4 (2006), 10–38
-
Slender partial quadrangles and their automorphisms
Algebra Logika, 45:5 (2006), 603–619
-
Amply regular graphs and block designs
Sibirsk. Mat. Zh., 47:4 (2006), 753–768
-
On local $GQ(s,t)$ graphs with strongly regular $\mu$-subgraphs
Algebra i Analiz, 17:3 (2005), 93–106
-
Automorphisms of Strongly Regular Krein Graphs without Triangles
Algebra Logika, 44:3 (2005), 335–354
-
On a class of coedge regular graphs
Izv. RAN. Ser. Mat., 69:6 (2005), 95–114
-
On automorphisms of strongly regular graphs with the parameters $\lambda=1$ and $\mu=2$
Diskr. Mat., 16:1 (2004), 95–104
-
On the strong regularity of some edge-regular graphs
Izv. RAN. Ser. Mat., 68:1 (2004), 159–182
-
On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$
Mat. Sb., 195:3 (2004), 47–68
-
On good pairs in edge-regular graphs
Diskr. Mat., 15:1 (2003), 77–97
-
On Crown-Free Graphs with Regular $\mu$-Subgraphs, II
Mat. Zametki, 74:3 (2003), 396–406
-
Ovoids and Bipartite Subgraphs in Generalized Quadrangles
Mat. Zametki, 73:6 (2003), 878–885
-
On pseudogeometrical graphs for some partial geometries
Fundam. Prikl. Mat., 8:1 (2002), 117–127
-
On strongly regular graphs with $k=2\mu$ and their extensions
Sibirsk. Mat. Zh., 43:3 (2002), 609–619
-
Automorphisms of Aschbacher Graphs
Algebra Logika, 40:2 (2001), 125–134
-
Extensions of $\mathit{GQ}(4,2)$, the completely regular case
Diskr. Mat., 13:3 (2001), 91–109
-
Pseudodual grids and extensions of generalized quadrangles
Sibirsk. Mat. Zh., 42:5 (2001), 1117–1124
-
On the graphs with $µ$-subgraphs isomorphic to $K_{u\times 2}$
Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001), 215–224
-
Pseudo-geometric graphs of the partial geometries $pG_2(4,t)$
Diskr. Mat., 12:1 (2000), 113–134
-
On strongly regular graphs with parameters $(75,32,10,16)$ and $(95,40,12,20)$
Fundam. Prikl. Mat., 6:1 (2000), 179–193
-
Affine ovoids and extensions of generalized quadrangles
Mat. Zametki, 68:2 (2000), 266–271
-
$GQ(4,2)$-extensions, strongly regular case
Mat. Zametki, 68:1 (2000), 113–119
-
On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$
Mat. Sb., 191:7 (2000), 89–104
-
Partial geometries and their extensions
Uspekhi Mat. Nauk, 54:5(329) (1999), 25–76
-
On the structure of connected locally $GQ(3,9)$-graphs
Diskretn. Anal. Issled. Oper., Ser. 1, 5:2 (1998), 61–77
-
Locally $GQ(3,5)$-graphs and geometries with short lines
Diskr. Mat., 10:2 (1998), 72–86
-
On a class of graphs without 3-stars
Mat. Zametki, 63:3 (1998), 407–413
-
Locally Shrikhande graphs and their automorphisms
Sibirsk. Mat. Zh., 39:5 (1998), 1085–1097
-
Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals
Diskr. Mat., 9:3 (1997), 101–116
-
On 2-locally Seidel graphs
Izv. RAN. Ser. Mat., 61:4 (1997), 67–80
-
Characterization of a class of edge-regular graphs
Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 1, 22–27
-
On extensions of partial geometries containing small $\mu$-subgraphs
Diskretn. Anal. Issled. Oper., 3:3 (1996), 71–83
-
О сильно регулярных расширениях обобщенных четырехугольников с короткими прямыми
Diskr. Mat., 8:3 (1996), 31–39
-
Coedge regular graphs without 3-stars
Mat. Zametki, 60:4 (1996), 495–503
-
On separated graphs with certain regularity conditions
Mat. Sb., 187:10 (1996), 73–86
-
On pseudogeometric graphs of the partial geometries $pG_2(4,t)$
Mat. Sb., 187:7 (1996), 97–112
-
On regular Terwilliger graphs with $\mu=2$
Sibirsk. Mat. Zh., 37:5 (1996), 1132–1134
-
On regular graphs in which each edge lies in the largest number of triangles
Diskretn. Anal. Issled. Oper., 2:4 (1995), 42–53
-
On a strongly regular graph with the parameters $(64,18,2,6)$
Diskr. Mat., 7:3 (1995), 121–128
-
Cyclic TI-subgroups of order 4 in exceptional Chevalley groups
Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995), 41–49
-
Finite locally-$GQ(3,3)$ graphs
Sibirsk. Mat. Zh., 35:6 (1994), 1314–1324
-
Strongly regular locally latticed graphs
Diskr. Mat., 5:4 (1993), 145–150
-
On strongly regular extensions of generalized quadrangles
Mat. Sb., 184:12 (1993), 123–132
-
Tightly embedded subgroups with abelian fusion
Trudy Inst. Mat. i Mekh. UrO RAN, 2 (1992), 19–26
-
A reduction theorem for TIsubgroups
Izv. Akad. Nauk SSSR Ser. Mat., 55:2 (1991), 303–317
-
Strongly regular graphs with $\lambda=1$
Mat. Zametki, 44:5 (1988), 667–672
-
Finite groups of $2$-local $3$-rank $1$
Sibirsk. Mat. Zh., 29:6 (1988), 100–110
-
Groups with triangular classes of involutions
Sibirsk. Mat. Zh., 29:2 (1988), 204–205
-
On $TI$-subgroups of finite groups
Izv. Akad. Nauk SSSR Ser. Mat., 50:1 (1986), 22–36
-
Finite groups
Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 24 (1986), 3–120
-
$3$-characterizations of finite groups
Algebra Logika, 24:2 (1985), 173–180
-
Finite groups with a centralizer of order $6$
Dokl. Akad. Nauk SSSR, 284:6 (1985), 1312–1313
-
Finite simple groups with a standard subgroup of the type $L_3(4)$
Mat. Zametki, 37:1 (1985), 7–12
-
$TI$-subgroups in groups of characteristic 2 type
Mat. Sb. (N.S.), 127(169):2(6) (1985), 239–244
-
Finite groups containing thin $2$-local subgroups
Sibirsk. Mat. Zh., 26:5 (1985), 99–110
-
A characterization of the Tits simple group
Trudy Inst. Mat. Sib. Otd. AN SSSR, 4 (1984), 28–49
-
Finite groups with a self-normalizing subgroup of order 6. II
Algebra Logika, 22:5 (1983), 518–525
-
On tightly embedded subgroups of finite groups
Mat. Sb. (N.S.), 121(163):4(8) (1983), 523–532
-
Finite groups with bounded involution centralizer
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 10, 8–14
-
Elementary $TI$-subgroups of finite groups
Mat. Zametki, 30:2 (1981), 179–184
-
Finite groups with a noninvariant four-core
Sibirsk. Mat. Zh., 22:2 (1981), 212–214
-
Finite groups with a sixth-order centralizer. II
Algebra Logika, 19:2 (1980), 214–223
-
Finite groups with a self-normalizing subgroup of order six
Algebra Logika, 19:1 (1980), 91–102
-
On the generation of finite groups by classes of involutions
Mat. Sb. (N.S.), 111(153):2 (1980), 266–278
-
A generalization of Prince's theorem
Sibirsk. Mat. Zh., 19:1 (1978), 100–107
-
Finite groups with a sixth order centralizer
Algebra Logika, 16:4 (1977), 432–442
-
Groups with a centralizer of sixth order
Mat. Zametki, 22:1 (1977), 153–159
-
Finite groups with normal intersections of Sylow $2$-subgroups
Algebra Logika, 15:6 (1976), 655–659
-
To the 65-th anniversary of prof. A. G. Kusraev
Vladikavkaz. Mat. Zh., 20:2 (2018), 111–119
-
Koibaev Vladimir Amurkhanovich (on his 60th birthday)
Vladikavkaz. Mat. Zh., 17:2 (2015), 68–70
-
Ivan Ivanovich Eremin
Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 5–12
-
On the 100th birthday of Sergei Nikolaevich Chernikov
Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 5–9
-
International conference on “Algebra and geometry” dedicated to the 80th birthday A. I. Starostin
Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 321–325
-
To the 75th anniversary of academician of Russian Academy of Sciences Yu. S. Osipov
Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011), 5–6
-
School-Conference on Group Theory
Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 222–225
-
On the collaboration of Siberian and Ural mathematicians
Sib. Èlektron. Mat. Izv., 4 (2007), 22–27
-
International Conference on group theory deducated to the memory of S. N. Chernikov
Uspekhi Mat. Nauk, 53:4(322) (1998), 223
-
IV School on the Theory of Finite Groups
Uspekhi Mat. Nauk, 40:1(241) (1985), 241–243
© , 2025