RUS  ENG
Full version
PEOPLE

Gonchenko Sergei Vladimirovich

Publications in Math-Net.Ru

  1. What is Quasi-Conservative Dynamics? On the Anniversary of A. D. Morozov

    Rus. J. Nonlin. Dyn., 21:1 (2025),  5–13
  2. Scientific Heritage of L.P. Shilnikov. Part II. Homoclinic Chaos

    Regul. Chaotic Dyn., 30:2 (2025),  155–173
  3. On the Structure of Orbits from a Neighborhood of a Transversal Homoclinic Orbit to a Nonhyperbolic Fixed Point

    Regul. Chaotic Dyn., 30:1 (2025),  9–25
  4. In Honor of the 90th Anniversary of Leonid Pavlovich Shilnikov (1934–2011)

    Regul. Chaotic Dyn., 30:1 (2025),  1–8
  5. On Two-Dimensional Diffeomorphisms with Homoclinic Orbits to Nonhyperbolic Fixed Points

    Rus. J. Nonlin. Dyn., 20:1 (2024),  151–165
  6. Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Hénon Map

    Regul. Chaotic Dyn., 27:6 (2022),  647–667
  7. On methods for verification of the pseudohyperbolicity of strange attractors

    Izvestiya VUZ. Applied Nonlinear Dynamics, 29:1 (2021),  160–185
  8. On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles

    Izv. RAN. Ser. Mat., 84:1 (2020),  27–59
  9. Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion

    Trudy Mat. Inst. Steklova, 308 (2020),  135–151
  10. Mathematical theory of dynamical chaos and its applications: Review. Part 2. Spiral chaos of three-dimensional flows

    Izvestiya VUZ. Applied Nonlinear Dynamics, 27:5 (2019),  7–52
  11. Mathematical theory of dynamical chaos and its applications: Review. Part 1. Pseudohyperbolic attractors

    Izvestiya VUZ. Applied Nonlinear Dynamics, 25:2 (2017),  4–36
  12. On three types of dynamics and the notion of attractor

    Trudy Mat. Inst. Steklova, 297 (2017),  133–157
  13. On Bifurcations of Area-preserving and Nonorientable Maps with Quadratic Homoclinic Tangencies

    Regul. Chaotic Dyn., 19:6 (2014),  702–717
  14. Birth of Discrete Lorenz Attractors at the Bifurcations of 3D Maps with Homoclinic Tangencies to Saddle Points

    Regul. Chaotic Dyn., 19:4 (2014),  495–505
  15. On Bifurcations of Multidimensional Diffeomorphisms Having a Homoclinic Tangency to a Saddle-node

    Regul. Chaotic Dyn., 19:4 (2014),  461–473
  16. Scientific Heritage of L.P. Shilnikov

    Regul. Chaotic Dyn., 19:4 (2014),  435–460
  17. On existence of Lorenz-like attractors in a nonholonomic model of Celtic stones

    Nelin. Dinam., 9:1 (2013),  77–89
  18. Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone

    Regul. Chaotic Dyn., 18:5 (2013),  521–538
  19. The destruction of the Smale-Williams solenoids

    Zhurnal SVMO, 15:1 (2013),  65–70
  20. On some new aspects of Celtic stone chaotic dynamics

    Nelin. Dinam., 8:3 (2012),  507–518
  21. Towards scenarios of chaos appearance in three-dimensional maps

    Nelin. Dinam., 8:1 (2012),  3–28
  22. Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries

    Nelin. Dinam., 7:1 (2011),  3–24
  23. On classification of classical and half-orientable horseshoes in terms of boundary points

    Nelin. Dinam., 6:3 (2010),  549–566
  24. On bifurcations of three-dimensional diffeomorphisms with a non-transversal heteroclinic cycle containing saddle-foci

    Nelin. Dinam., 6:1 (2010),  61–77
  25. Towards a classification of linear and nonlinear smale horseshoes

    Nelin. Dinam., 3:4 (2007),  423–443
  26. Bifurcations of Three-Dimensional Diffeomorphisms with Non-Simple Quadratic Homoclinic Tangencies and Generalized Hénon Maps

    Regul. Chaotic Dyn., 12:3 (2007),  233–266
  27. On the existence of infinitely many stable and unstable invariant tori for systems from Newhouse regions with heteroclinic tangencies

    Nelin. Dinam., 2:1 (2006),  3–25
  28. Quasiperiodic regimes in multisection semiconductor lasers

    Regul. Chaotic Dyn., 11:2 (2006),  213–224
  29. Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation

    Regul. Chaotic Dyn., 11:2 (2006),  191–212
  30. Existence of Infinitely Many Elliptic Periodic Orbits in Four-Dimensional Symplectic Maps with a Homoclinic Tangency

    Trudy Mat. Inst. Steklova, 244 (2004),  115–142
  31. On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies

    Trudy Mat. Inst. Steklova, 244 (2004),  87–114
  32. On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points

    Zap. Nauchn. Sem. POMI, 300 (2003),  155–166
  33. Stable Periodic Trajectories of Two-Dimensional Diffeomorphisms Close to a Diffeomorphism with a Structurally Unstable Heteroclinic Contour

    Differ. Uravn., 37:2 (2001),  191–201
  34. Hyperbolic properties of four-dimensional symplectic mappings with a structurally unstable trajectory homoclinic to a fixed point of the saddle-focus type

    Differ. Uravn., 36:11 (2000),  1464–1474
  35. Homoclinic tangencies of arbitrary order in Newhouse domains

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 67 (1999),  69–128
  36. Elliptic Periodic Orbits Near a Homoclinic Tangency in Four-Dimensional Symplectic Maps and Hamiltonian Systems With Three Degrees of Freedom

    Regul. Chaotic Dyn., 3:4 (1998),  3–26
  37. On two-dimensional analitical area-preserving diffeomorphisms with a countable set of elliptic periodic points of stable type

    Regul. Chaotic Dyn., 2:3-4 (1997),  106–123
  38. On Newhouse domains of two-dimensional diffeomorphisms that are close to a diffeomorphism with a structurally unstable heteroclinic contour

    Trudy Mat. Inst. Steklova, 216 (1997),  76–125
  39. Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour

    Mat. Sb., 187:9 (1996),  3–24
  40. Dynamical phenomena in multidimensional systems with a structurally unstable homoclinic Poincaré curve

    Dokl. Akad. Nauk, 330:2 (1993),  144–147
  41. On the existence of Newhouse regions in a neighborhood of systems with a structurally unstable homoclinic Poincaré curve (the multidimensional case)

    Dokl. Akad. Nauk, 329:4 (1993),  404–407
  42. On moduli of systems with a structurally unstable homoclinic Poincare curve

    Izv. RAN. Ser. Mat., 56:6 (1992),  1165–1197
  43. Models with a structurally unstable homoclinic Poincaré curve

    Dokl. Akad. Nauk SSSR, 320:2 (1991),  269–272
  44. Dynamical systems with structurally unstable homoclinic curves

    Dokl. Akad. Nauk SSSR, 286:5 (1986),  1049–1053
  45. Stable periodic motions in systems close to a structurally unstable homoclinic curve

    Mat. Zametki, 33:5 (1983),  745–756

  46. Mixed dynamics: elements of theory and examples

    Izvestiya VUZ. Applied Nonlinear Dynamics, 32:6 (2024),  722–765
  47. Scientific legacy of L. P. Shilnikov: to the 90th anniversary

    Izvestiya VUZ. Applied Nonlinear Dynamics, 32:6 (2024),  713–721
  48. To the 75th anniversary of Vyacheslav Zigmundovich Grines

    Zhurnal SVMO, 23:4 (2021),  472–476
  49. Вячеслав Зигмундович Гринес (к семидесятилетию со дня рождения)

    Zhurnal SVMO, 18:4 (2016),  168–171
  50. Leonid Pavlovich Shilnikov (17.12.1934–26.12.2011)

    Nelin. Dinam., 8:1 (2012),  183–186
  51. Leonid Pavlovich Shil'nikov (obituary)

    Uspekhi Mat. Nauk, 67:3(405) (2012),  175–178
  52. Leonid Pavlovich Shilnikov (to the 75th anniversary)

    Nelin. Dinam., 6:1 (2010),  5–22
  53. On a homoclinic origin of Hénon-like maps

    Regul. Chaotic Dyn., 15:4-5 (2010),  462–481
  54. Shilnikov’s cross-map method and hyperbolic dynamics of three-dimensional Hénon-like maps

    Regul. Chaotic Dyn., 15:2-3 (2010),  165–184
  55. On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to Wild Lorenz-Like Attractors

    Regul. Chaotic Dyn., 14:1 (2009),  137–147
  56. On Cascades of Elliptic Periodic Points in Two-Dimensional Symplectic Maps with Homoclinic Tangencies

    Regul. Chaotic Dyn., 14:1 (2009),  116–136
  57. Leonid Pavlovich Shilnikov. On his 70th birthday

    Regul. Chaotic Dyn., 11:2 (2006),  139–140


© Steklov Math. Inst. of RAS, 2025