RUS  ENG
Full version
PEOPLE

Danchenko Vladimir Ilich

Publications in Math-Net.Ru

  1. Bernstein-type estimates for the derivatives of trigonometric polynomials

    Probl. Anal. Issues Anal., 10(28):3 (2021),  31–40
  2. Extraction of harmonics from trigonometric polynomials by phase-amplitude operators

    Algebra i Analiz, 32:2 (2020),  21–44
  3. Extraction of Several Harmonics from Trigonometric Polynomials. Fejér-Type Inequalities

    Trudy Mat. Inst. Steklova, 308 (2020),  101–115
  4. Extremal and approximative properties of simple partial fractions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 12,  9–49
  5. Cauchy and Poisson formulas for polyanalytic functions and applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 1,  15–26
  6. Sharp quadrature formulas and inequalities between various metrics for rational functions

    Sibirsk. Mat. Zh., 57:2 (2016),  282–296
  7. Estimates for $L_p$-norms of simple partial fractions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 6,  9–19
  8. Integral Estimates of Lengths of Level Lines of Rational Functions and Zolotarev's Problem

    Mat. Zametki, 94:3 (2013),  331–337
  9. Criterion for the appearance of singular nodes under interpolation by simple partial fractions

    Trudy Mat. Inst. Steklova, 278 (2012),  49–58
  10. On integral equations of stationary distributions for biological systems

    CMFD, 36 (2010),  50–60
  11. On the massiveness of exceptional sets of the maximum modulus principle

    Izv. RAN. Ser. Mat., 74:4 (2010),  63–74
  12. Convergence of simple partial fractions in $L_p(\mathbb R)$

    Mat. Sb., 201:7 (2010),  53–66
  13. Chebyshev's alternance in the approximation of constants by simple partial fractions

    Trudy Mat. Inst. Steklova, 270 (2010),  86–96
  14. Existence and Uniqueness of a Stationary Distribution of a Biological Community

    Trudy Mat. Inst. Steklova, 267 (2009),  46–55
  15. Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$

    Mat. Zametki, 83:5 (2008),  643–649
  16. Lengths of lemniscates. Variations of rational functions

    Mat. Sb., 198:8 (2007),  51–58
  17. Estimates of derivatives of simplest fractions and other questions

    Mat. Sb., 197:4 (2006),  33–52
  18. Existence Criterion for Estimates of Derivatives of Rational Functions

    Mat. Zametki, 78:4 (2005),  493–502
  19. Estimates of Green potentials. Applications

    Mat. Sb., 194:1 (2003),  61–86
  20. On the Boundary Properties of Solutions to the Generalized Cauchy–Riemann Equation

    Trudy Mat. Inst. Steklova, 236 (2002),  142–152
  21. Approximation by Simplest Fractions

    Mat. Zametki, 70:4 (2001),  553–559
  22. On boundary behavior of solutions of the generalized Cauchy–Riemann equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 3,  16–25
  23. Several integral estimates of the derivatives of rational functions on sets of finite density

    Mat. Sb., 187:10 (1996),  33–52
  24. Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles

    Mat. Sb., 185:8 (1994),  63–80
  25. On the rate of convergence to the real axis of poles of normalized logarithmic derivatives of polynomials

    Dokl. Akad. Nauk, 330:1 (1993),  15–16
  26. Mapping of sets of finite $\alpha$-measure by rational functions

    Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987),  1309–1321
  27. Mapping sets of locally finite length by a rational function

    Trudy Mat. Inst. Steklov., 180 (1987),  105–107
  28. Estimates of norms and variations of rational constituents of meromorphic functions

    Dokl. Akad. Nauk SSSR, 280:5 (1985),  1043–1046
  29. On separation of singularities of meromorphic functions

    Mat. Sb. (N.S.), 125(167):2(10) (1984),  181–198
  30. An integral estimate for the derivative of a rational function

    Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979),  277–293
  31. Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions

    Izv. Akad. Nauk SSSR Ser. Mat., 41:1 (1977),  182–202


© Steklov Math. Inst. of RAS, 2024