RUS  ENG
Full version
PEOPLE

Tishchenko Vladimir Nikolaevich

Publications in Math-Net.Ru

  1. Generation of torsional Alfvén and slow magnetosonic waves by periodic bunches of laser plasma in a magnetised background

    Kvantovaya Elektronika, 49:2 (2019),  178–180
  2. Localisation of intense sound produced by an optical pulsating discharge in the air

    Kvantovaya Elektronika, 47:10 (2017),  911–914
  3. Merging of the waves produced by optical breakdowns in rarefied plasma with a magnetic field. Laboratory modelling

    Kvantovaya Elektronika, 47:9 (2017),  849–852
  4. Torsional Alfvén and slow magnetoacoustic waves generated by a plasma in a magnetic field

    Pis'ma v Zh. Èksper. Teoret. Fiz., 104:5 (2016),  303–305
  5. Generation of laser plasma bunches with a high efficiency of energy concentration for laboratory simulation of collisionless shock waves in magnetised cosmic plasma

    Kvantovaya Elektronika, 46:5 (2016),  399–405
  6. Sound spectrum of a pulsating optical discharge

    Kvantovaya Elektronika, 46:2 (2016),  169–172
  7. Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas

    Kvantovaya Elektronika, 44:2 (2014),  98–101
  8. Criteria for formation of low-frequency sound under wide-aperture repetitively pulsed laser irradiation of solids

    Kvantovaya Elektronika, 41:10 (2011),  895–900
  9. Mechanism for shock wave merging in magnetised plasma: criteria and efficiency of formation of low-frequency magnetosonic waves

    Kvantovaya Elektronika, 40:5 (2010),  464–469
  10. Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas

    Kvantovaya Elektronika, 38:1 (2008),  82–87
  11. Laser air-jet engine: the action of shock waves at low laser pulse repetition rates

    Kvantovaya Elektronika, 37:8 (2007),  798–800
  12. Stationary force produced by an optical pulsating discharge in a laser engine model

    Kvantovaya Elektronika, 37:7 (2007),  669–673
  13. Laser engine based on the resonance merging of shock waves

    Kvantovaya Elektronika, 36:7 (2006),  673–683
  14. Merging of shock waves produced by a moving pulsating optical discharge

    Kvantovaya Elektronika, 36:5 (2006),  470–472
  15. Quasi-stationary magnetic and electric waves produced by a pulsed shock-wave source

    Kvantovaya Elektronika, 36:1 (2006),  56–60
  16. Doppler effect for an optical discharge source of shock waves

    Kvantovaya Elektronika, 35:11 (2005),  1015–1018
  17. A pulsating optical discharge moving in a gas

    Kvantovaya Elektronika, 35:11 (2005),  973–975
  18. Mechanism of shock wave merging in a laser jet engine

    Kvantovaya Elektronika, 34:12 (2004),  1143–1146
  19. Interaction of an optical pulsed discharge with a gas: conditions for stable generation and merging of shock waves

    Kvantovaya Elektronika, 34:10 (2004),  941–947
  20. Generation of a low-frequency wave by an optical discharge moving in a gas at a subsonic speed

    Kvantovaya Elektronika, 33:9 (2003),  823–830
  21. Spectrum of shock waves produced by an optical discharge at a high laser-pulse repetition rate

    Kvantovaya Elektronika, 32:4 (2002),  329–334
  22. Simulation of shock waves at high repetition rate of laser sparks

    Kvantovaya Elektronika, 31:4 (2001),  283–284
  23. Supersonic flow over bodies control by using a powerful optical pulsating discharge

    Dokl. Akad. Nauk, 351:3 (1996),  339–340
  24. The stabilization of optical discharge in supersonic argon flow

    Dokl. Akad. Nauk, 336:4 (1994),  466–467
  25. Kinetic coefficients for the active medium of a CO2 laser pumped by an ac electric field

    Kvantovaya Elektronika, 15:12 (1988),  2497–2501
  26. Влияние межэлектронных соударений на функцию распределения электронов в азоте

    TVT, 25:4 (1987),  787–790
  27. Optimal conditions for the formation of quasi-cw radiation pulses in a CO2 amplifier

    Kvantovaya Elektronika, 12:6 (1985),  1179–1183
  28. Investigation of a $CO_2$ amplifier emitting microsecond pulses

    Kvantovaya Elektronika, 7:8 (1980),  1685–1693
  29. Optimum conditions for formation of short and long radiation pulses in CO$_2$ lasers

    Prikl. Mekh. Tekh. Fiz., 18:3 (1977),  9–15
  30. Efficiency of CO2 amplifiers

    Kvantovaya Elektronika, 4:5 (1977),  970–975
  31. Optimization and limiting characteristics of CO$_2$ lasers

    Prikl. Mekh. Tekh. Fiz., 16:5 (1975),  120–131


© Steklov Math. Inst. of RAS, 2024