RUS  ENG
Full version
PEOPLE

Gritsenko Valerii Alekseevich

Publications in Math-Net.Ru

  1. Antisymmetric paramodular forms of weight 3

    Mat. Sb., 210:12 (2019),  43–66
  2. Lorentzian Kac–Moody algebras with Weyl groups of 2-reflections

    Proc. London Math. Soc. (3), 116:3 (2018),  485–533
  3. Reflective modular forms and applications

    Uspekhi Mat. Nauk, 73:5(443) (2018),  53–122
  4. Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac–Moody algebras

    Tr. Mosk. Mat. Obs., 78:1 (2017),  89–100
  5. Conjecture on theta-blocks of order 1

    Uspekhi Mat. Nauk, 72:5(437) (2017),  191–192
  6. Electronic structure of SiN$_x$

    Pis'ma v Zh. Èksper. Teoret. Fiz., 98:11 (2013),  801–805
  7. On classification of Lorentzian Kac–Moody algebras

    Uspekhi Mat. Nauk, 57:5(347) (2002),  79–138
  8. Elliptic genus of Calabi–Yau manifolds and Jacobi and Siegel modular forms

    Algebra i Analiz, 11:5 (1999),  100–125
  9. Moduli of Abelian surfaces with a $(1,p^2)$ polarisation

    Izv. RAN. Ser. Mat., 60:5 (1996),  19–26
  10. Igusa modular forms and 'the simplest' Lorentzian Kac–Moody algebras

    Mat. Sb., 187:11 (1996),  27–66
  11. Modular forms and moduli spaces of abelian and $K3$ surfaces

    Algebra i Analiz, 6:6 (1994),  65–102
  12. Induction in the theory of zeta functions

    Algebra i Analiz, 6:1 (1994),  3–63
  13. The Maass space for ${\mathrm{SU}}(2,2)$

    Trudy Mat. Inst. Steklov., 183 (1990),  68–78
  14. Jacobi functions and Euler products for Hermitian modular forms

    Zap. Nauchn. Sem. LOMI, 183 (1990),  77–123
  15. Parabolic extension of Hecke ring of the general linear group. II

    Zap. Nauchn. Sem. LOMI, 183 (1990),  56–76
  16. Expantion of Hecke polynomials of classical groups

    Mat. Sb. (N.S.), 137(179):3(11) (1988),  328–351
  17. The Fourier–Jacobi functions of $n$

    Zap. Nauchn. Sem. LOMI, 168 (1988),  32–44
  18. Arithmetic of quaternions and Eisenstein series

    Zap. Nauchn. Sem. LOMI, 160 (1987),  82–90
  19. Zeta-function of degree six of hermitian modular forms of genus 2

    Zap. Nauchn. Sem. LOMI, 154 (1986),  46–66
  20. Parabolic extensions of Hecke ring of a general linear group

    Zap. Nauchn. Sem. LOMI, 154 (1986),  36–45
  21. Construction of Hermitian modular forms of genus two by cusp forms of genus one

    Zap. Nauchn. Sem. LOMI, 144 (1985),  51–67
  22. Recurrence relations in the theory of Hecke's operators

    Zap. Nauchn. Sem. LOMI, 125 (1983),  65–73
  23. The action of modular operators on the Fourier–Jacobi coefficients of modular forms

    Mat. Sb. (N.S.), 119(161):2(10) (1982),  248–277
  24. Analytic continuation of symmetric squares

    Mat. Sb. (N.S.), 107(149):3(11) (1978),  323–346
  25. Symmetric squares of zeta-functions for the principal congruence subgroup of the Siegel group of genus 2

    Mat. Sb. (N.S.), 104(146):1(9) (1977),  22–41


© Steklov Math. Inst. of RAS, 2025