|
|
Publications in Math-Net.Ru
-
Antisymmetric paramodular forms of weight 3
Mat. Sb., 210:12 (2019), 43–66
-
Lorentzian Kac–Moody algebras with Weyl groups of 2-reflections
Proc. London Math. Soc. (3), 116:3 (2018), 485–533
-
Reflective modular forms and applications
Uspekhi Mat. Nauk, 73:5(443) (2018), 53–122
-
Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac–Moody algebras
Tr. Mosk. Mat. Obs., 78:1 (2017), 89–100
-
Conjecture on theta-blocks of order 1
Uspekhi Mat. Nauk, 72:5(437) (2017), 191–192
-
Electronic structure of SiN$_x$
Pis'ma v Zh. Èksper. Teoret. Fiz., 98:11 (2013), 801–805
-
On classification of Lorentzian Kac–Moody algebras
Uspekhi Mat. Nauk, 57:5(347) (2002), 79–138
-
Elliptic genus of Calabi–Yau manifolds and Jacobi and Siegel modular forms
Algebra i Analiz, 11:5 (1999), 100–125
-
Moduli of Abelian surfaces with a $(1,p^2)$ polarisation
Izv. RAN. Ser. Mat., 60:5 (1996), 19–26
-
Igusa modular forms and 'the simplest' Lorentzian Kac–Moody algebras
Mat. Sb., 187:11 (1996), 27–66
-
Modular forms and moduli spaces of abelian and $K3$ surfaces
Algebra i Analiz, 6:6 (1994), 65–102
-
Induction in the theory of zeta functions
Algebra i Analiz, 6:1 (1994), 3–63
-
The Maass space for ${\mathrm{SU}}(2,2)$
Trudy Mat. Inst. Steklov., 183 (1990), 68–78
-
Jacobi functions and Euler products for Hermitian modular forms
Zap. Nauchn. Sem. LOMI, 183 (1990), 77–123
-
Parabolic extension of Hecke ring of the general linear group. II
Zap. Nauchn. Sem. LOMI, 183 (1990), 56–76
-
Expantion of Hecke polynomials of classical groups
Mat. Sb. (N.S.), 137(179):3(11) (1988), 328–351
-
The Fourier–Jacobi functions of $n$
Zap. Nauchn. Sem. LOMI, 168 (1988), 32–44
-
Arithmetic of quaternions and Eisenstein series
Zap. Nauchn. Sem. LOMI, 160 (1987), 82–90
-
Zeta-function of degree six of hermitian modular forms of genus 2
Zap. Nauchn. Sem. LOMI, 154 (1986), 46–66
-
Parabolic extensions of Hecke ring of a general linear group
Zap. Nauchn. Sem. LOMI, 154 (1986), 36–45
-
Construction of Hermitian modular forms of genus two by cusp forms of genus one
Zap. Nauchn. Sem. LOMI, 144 (1985), 51–67
-
Recurrence relations in the theory of Hecke's operators
Zap. Nauchn. Sem. LOMI, 125 (1983), 65–73
-
The action of modular operators on the Fourier–Jacobi coefficients of modular forms
Mat. Sb. (N.S.), 119(161):2(10) (1982), 248–277
-
Analytic continuation of symmetric squares
Mat. Sb. (N.S.), 107(149):3(11) (1978), 323–346
-
Symmetric squares of zeta-functions for the principal congruence subgroup of the Siegel group of genus 2
Mat. Sb. (N.S.), 104(146):1(9) (1977), 22–41
© , 2025