RUS  ENG
Full version
PEOPLE

Trigub Roald Mikhailovich

Publications in Math-Net.Ru

  1. Rogosinsky–Bernstein Polynomial Method of Summation of Trigonometric Fourier Series

    Mat. Zametki, 111:4 (2022),  592–605
  2. On Fourier Series on the Torus and Fourier Transforms

    Mat. Zametki, 110:5 (2021),  766–772
  3. Asymptotics of approximation of continuous periodic functions by linear means of their Fourier series

    Izv. RAN. Ser. Mat., 84:3 (2020),  185–202
  4. Chebyshev Polynomials and Integer Coefficients

    Mat. Zametki, 105:2 (2019),  302–312
  5. The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables

    Mat. Sb., 209:5 (2018),  166–186
  6. Letter to the Editors

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  296
  7. On multiply monotone functions.

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  257–271
  8. Almost Everywhere Summability of Fourier Series with Indication of the Set of Convergence

    Mat. Zametki, 100:1 (2016),  163–179
  9. Summability of trigonometric Fourier series at $d$-points and a generalization of the Abel–Poisson method

    Izv. RAN. Ser. Mat., 79:4 (2015),  205–224
  10. Generalization of the Abel–Poisson Method for Summations of Fourier Trigonometric Series

    Mat. Zametki, 96:3 (2014),  473–475
  11. The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials

    Mat. Sb., 204:12 (2013),  127–146
  12. On the representation of a function as an absolutely convergent Fourier integral

    Trudy Mat. Inst. Steklova, 269 (2010),  153–166
  13. Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation

    Izv. RAN. Ser. Mat., 73:4 (2009),  49–76
  14. Comparison of Linear Differential Operators

    Mat. Zametki, 82:3 (2007),  426–440
  15. Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients

    Izv. RAN. Ser. Mat., 67:1 (2003),  199–221
  16. A Lower Bound for the $L_1$-norm of Fourier Series of Polynomial Type

    Mat. Zametki, 73:6 (2003),  951–953
  17. Compactly supported positive definite radial functions of polynomial kind and maximal smoothness

    Mat. Fiz. Anal. Geom., 9:3 (2002),  394–400
  18. Positive-definite splines of special form

    Mat. Sb., 193:12 (2002),  41–68
  19. Approximation of Smooth Functions and Constants by Polynomials with Integer and Natural Coefficients

    Mat. Zametki, 70:1 (2001),  123–136
  20. A generalization of the Euler–Maclaurin formula

    Mat. Zametki, 61:2 (1997),  312–316
  21. Multipliers in the Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series

    Mat. Sb., 188:4 (1997),  145–160
  22. Multipliers in the Hardy spaces $H_p(D^m)$ for $p\in(0,1]$ and approximation properties of methods for the summation of power series

    Dokl. Akad. Nauk, 335:6 (1994),  697–699
  23. Direct theorems on approximation of smooth functions by algebraic polynomials on a segment

    Mat. Zametki, 54:6 (1993),  113–121
  24. Multipliers of Fourier series and approximation of functions by polynomials in the spaces $C$ and $L$

    Dokl. Akad. Nauk SSSR, 306:2 (1989),  292–296
  25. Criterium Based on the Characteristic Function and the Polya-Type Sign for Radial Functions in Several Variables

    Teor. Veroyatnost. i Primenen., 34:4 (1989),  805–810
  26. On the comparison principle for Fourier expansions and existence subspaces in the integral metric

    Trudy Mat. Inst. Steklov., 180 (1987),  219–220
  27. Two-sided estimates of the approximation of functions by Riesz and Marcinkiewicz means

    Dokl. Akad. Nauk SSSR, 251:1 (1980),  34–36
  28. Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus

    Izv. Akad. Nauk SSSR Ser. Mat., 44:6 (1980),  1378–1409
  29. Summability of multiple Fourier series and the approximation of functions on the torus by polynomials

    Dokl. Akad. Nauk SSSR, 240:2 (1978),  276–279
  30. The approximation of functions by polynomials with special coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 1,  93–99
  31. On integral norms for polynomials

    Mat. Sb. (N.S.), 101(143):3(11) (1976),  315–333
  32. A relation between summability and absolute convergence of Fourier series and transforms

    Dokl. Akad. Nauk SSSR, 217:1 (1974),  34–37
  33. On a relationship in the theory of Fourier series

    Mat. Zametki, 15:5 (1974),  679–682
  34. Linear methods of Fourier series summability and the moduli of continuity of various orders

    Sibirsk. Mat. Zh., 12:6 (1971),  1416–1421
  35. Linear summation methods and the absolute convergence of Fourier series

    Izv. Akad. Nauk SSSR Ser. Mat., 32:1 (1968),  24–49
  36. Remarks on Fourier series

    Mat. Zametki, 3:5 (1968),  597–603
  37. The constructive characteristics of certain classes of functions

    Izv. Akad. Nauk SSSR Ser. Mat., 29:3 (1965),  615–630
  38. Approximation of functions by polynomials with integer coefficients

    Izv. Akad. Nauk SSSR Ser. Mat., 26:2 (1962),  261–280
  39. Approximation of functions by polynomials with integral coefficients

    Dokl. Akad. Nauk SSSR, 140:4 (1961),  773–775
  40. Approximation of functions with a given modulus of smoothness on the exterior of a segment and on a half-axis

    Dokl. Akad. Nauk SSSR, 132:2 (1960),  303–306

  41. Vladimir Ivanovich Belyi (obituary)

    Uspekhi Mat. Nauk, 53:6(324) (1998),  231–232


© Steklov Math. Inst. of RAS, 2024