RUS  ENG
Full version
PEOPLE

Golubov Boris Ivanovich

Publications in Math-Net.Ru

  1. Weighted Integrability of Multiple Multiplicative Fourier Transforms

    Mat. Zametki, 111:3 (2022),  365–374
  2. Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces

    Trudy Mat. Inst. Steklova, 319 (2022),  94–105
  3. Fourier transform and continuity of functions of bounded $\Phi$-variation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021),  43–49
  4. Modified Hardy and Hardy–Littlewood fractional operators in Morrey–Herz spaces and their commutators in weighted spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171 (2019),  70–77
  5. Fractional modified Hardy and Hardy–Littlewood operators and their commutators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 9,  16–26
  6. Generalized absolute convergence of series from Fourier coeficients by systems of Haar type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1,  10–20
  7. Uniform Convergence and Integrability of Multiplicative Fourier Transforms

    Mat. Zametki, 98:1 (2015),  44–60
  8. Fourier transforms in generalized Lipschitz classes

    Trudy Mat. Inst. Steklova, 280 (2013),  126–137
  9. Absolute convergence of double series of Fourier–Haar coefficients for functions of bounded $p$-variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 6,  3–13
  10. Spherical Jump of a Function and the Bochner–Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals

    Mat. Zametki, 91:4 (2012),  506–514
  11. Weighted integrability of multiplicative Fourier transforms

    Trudy Mat. Inst. Steklova, 269 (2010),  71–81
  12. Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  4–13
  13. Dyadic distributions

    Mat. Sb., 198:2 (2007),  67–90
  14. Modified Dyadic Integral and Fractional Derivative on $\mathbb R_+$

    Mat. Zametki, 79:2 (2006),  213–233
  15. Fractional Modified Dyadic Integral and Derivative on $\mathbb{R}_+$

    Funktsional. Anal. i Prilozhen., 39:2 (2005),  64–70
  16. A dyadic analogue of Wiener's Tauberian theorem and some related questions

    Izv. RAN. Ser. Mat., 67:1 (2003),  33–58
  17. A modified strong dyadic integral and derivative

    Mat. Sb., 193:4 (2002),  37–60
  18. On an analogue of Hardy's inequality for the Walsh–Fourier

    Izv. RAN. Ser. Mat., 65:3 (2001),  3–14
  19. On dyadic analogues of Hardy and Hardy–Littlewood operators

    Sibirsk. Mat. Zh., 40:6 (1999),  1244–1252
  20. The Hardy and Bellman transforms of the spaces $H^1$ and BMO

    Mat. Zametki, 63:3 (1998),  475–478
  21. An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations

    Mat. Sb., 189:5 (1998),  69–86
  22. Boundedness of the Hardy and the Hardy–Littlewood operators in the spaces $\operatorname {Re}H^1$ and $\mathrm {BMO}$

    Mat. Sb., 188:7 (1997),  93–106
  23. On a theorem of Bellman on Fourier coefficients

    Mat. Sb., 185:11 (1994),  31–40
  24. Absolute convergence of multiple Fourier series

    Mat. Zametki, 37:1 (1985),  13–24
  25. Multiple series and Fourier integrals

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 19 (1982),  3–54
  26. Asymptotic behavior of singular multiple integrals for differentiable functions

    Mat. Zametki, 30:5 (1981),  749–762
  27. A generalized symmetric derivative and the summability of multiple trigonometric series by the Lebesgue method

    Sibirsk. Mat. Zh., 22:6 (1981),  15–21
  28. On the rate of convergence of integrals of Gauss–Weierstrass type for functions of several variables

    Izv. Akad. Nauk SSSR Ser. Mat., 44:6 (1980),  1255–1278
  29. The Abel-Poisson summation method for multiple Fourier series

    Mat. Zametki, 27:1 (1980),  49–59
  30. On convergence of singular integrals of Gauss–Weierstrass type for functions of several variables

    Dokl. Akad. Nauk SSSR, 248:5 (1979),  1044–1048
  31. On the summability method of Abel–Poisson type for multiple Fourier integrals

    Mat. Sb. (N.S.), 108(150):2 (1979),  229–246
  32. On the summability of Fourier integrals by Riesz spherical means

    Mat. Sb. (N.S.), 104(146):4(12) (1977),  577–596
  33. The summability of conjugate multiple Fourier integrals by Riesz means

    Uspekhi Mat. Nauk, 31:5(191) (1976),  237–238
  34. Approximation of functions of several variables by spherical Riesz means

    Mat. Zametki, 17:2 (1975),  181–191
  35. On convergence of Riesz spherical means of multiple Fourier series

    Mat. Sb. (N.S.), 96(138):2 (1975),  189–211
  36. Convergence of Riesz spherical means of multiple Fourier series

    Dokl. Akad. Nauk SSSR, 215:1 (1974),  31–34
  37. The approximation of a Hölder class of two variables by Riesz spherical means

    Mat. Zametki, 15:1 (1974),  33–43
  38. The convergence of the double Fourier series of functions of bounded generalized variation. II

    Sibirsk. Mat. Zh., 15:4 (1974),  767–783
  39. The convergence of the double Fourier series of functions of bounded generalized variation. I

    Sibirsk. Mat. Zh., 15:2 (1974),  262–291
  40. The asymptotic $L_p$-norm of differentiated Fourier sums of functions of bounded variation

    Izv. Akad. Nauk SSSR Ser. Mat., 37:2 (1973),  399–421
  41. Functions of generalized bounded variation, convergence of their Fourier series and conjugate trigonometric series

    Dokl. Akad. Nauk SSSR, 205:6 (1972),  1277–1280
  42. Double Fourier series, and functions of bounded variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 12,  55–68
  43. Determination of the jump of a function of bounded $p$-variation by its Fourier series

    Mat. Zametki, 12:1 (1972),  19–28
  44. Asymptotic behavior of the $L_p$-norms of differentiated Fourier sums of functions of bounded variation

    Uspekhi Mat. Nauk, 27:6(168) (1972),  235–236
  45. On the convergence of Riesz spherical means of multiple Fourier series and integrals of functions of bounded generalized variation

    Mat. Sb. (N.S.), 89(131):4(12) (1972),  630–653
  46. Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials

    Mat. Sb. (N.S.), 87(129):2 (1972),  254–274
  47. Tests of the continuity of functions of bounded $p$-variation

    Sibirsk. Mat. Zh., 13:5 (1972),  1002–1015
  48. Series in the Haar system

    Itogi Nauki. Ser. Matematika. Mat. Anal. 1970, 1971,  109–146
  49. The $p$-variation of functions of two variables

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 9,  40–49
  50. The $p$-variation of functions

    Mat. Zametki, 5:2 (1969),  195–204
  51. On functions of bounded $p$-variation

    Izv. Akad. Nauk SSSR Ser. Mat., 32:4 (1968),  837–858
  52. The Fourier integral and the continuity of functions of bounded $p$-variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 11,  83–92
  53. Functions of bounded $p$-variation

    Uspekhi Mat. Nauk, 23:1(139) (1968),  219–220
  54. A certain class of complete orthogonal systems

    Sibirsk. Mat. Zh., 9:2 (1968),  297–314
  55. Continuous functions of bounded $p$-variation

    Mat. Zametki, 1:3 (1967),  305–312
  56. A class of convergence systems

    Mat. Sb. (N.S.), 71(113):1 (1966),  96–115
  57. On absolute convergence of series in Haar's system

    Uspekhi Mat. Nauk, 20:5(125) (1965),  198–202
  58. Fourier series of continuous functions relative to a Haar system

    Dokl. Akad. Nauk SSSR, 156:2 (1964),  247–250
  59. On Fourier series of continuous functions with respect to a Haar system

    Izv. Akad. Nauk SSSR Ser. Mat., 28:6 (1964),  1271–1296
  60. On the summability of sequences

    Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 4,  47–55

  61. 19th International Saratov Winter School “Contemporary problems of function theory and their applications"

    Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018),  354–365
  62. 18th International Saratov Winter School “Contemporary Problems of Function Theory and Their Applications”

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  485–487
  63. Evgenii Sergeevich Polovinkin (on his 70th birthday)

    Uspekhi Mat. Nauk, 71:5(431) (2016),  187–190
  64. Valentin Anatol'evich Skvortsov (on his 80th birthday)

    Uspekhi Mat. Nauk, 71:1(427) (2016),  184–186
  65. XVII International Saratov Winter School «Contemporary Problems of the Function Theory and its Applications». Dedicated to the 150th Anniversary of V.  A. Steklov

    Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015),  357–359
  66. 16 Saratov winter school “Contemporary problems of function theory and its applications”

    Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012),  114–115
  67. Boris Sergeevich Kashin (on his 60th birthday)

    Uspekhi Mat. Nauk, 66:4(400) (2011),  189–191
  68. Introduction

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  3
  69. On the 80th birthday of Petr Lavrent'evich Ul'yanov

    Uspekhi Mat. Nauk, 63:5(383) (2008),  203–207
  70. Károly Tandori (obituary)

    Uspekhi Mat. Nauk, 61:1(367) (2006),  165–168
  71. Cohn D. L. Measure theory. Boston etc.: Birkhäuser, 1980, IX+373 p. (Book review)

    Zh. Vychisl. Mat. Mat. Fiz., 22:4 (1982),  1016–1017


© Steklov Math. Inst. of RAS, 2025