|
|
Publications in Math-Net.Ru
-
Weighted Integrability of Multiple Multiplicative Fourier Transforms
Mat. Zametki, 111:3 (2022), 365–374
-
Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces
Trudy Mat. Inst. Steklova, 319 (2022), 94–105
-
Fourier transform and continuity of functions of bounded $\Phi$-variation
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021), 43–49
-
Modified Hardy and Hardy–Littlewood fractional operators in Morrey–Herz spaces and their commutators in weighted spaces
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171 (2019), 70–77
-
Fractional modified Hardy and Hardy–Littlewood operators and their commutators
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 9, 16–26
-
Generalized absolute convergence of series from Fourier coeficients by systems of Haar type
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 10–20
-
Uniform Convergence and Integrability of Multiplicative Fourier Transforms
Mat. Zametki, 98:1 (2015), 44–60
-
Fourier transforms in generalized Lipschitz classes
Trudy Mat. Inst. Steklova, 280 (2013), 126–137
-
Absolute convergence of double series of Fourier–Haar coefficients for functions of bounded $p$-variation
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 6, 3–13
-
Spherical Jump of a Function and the Bochner–Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals
Mat. Zametki, 91:4 (2012), 506–514
-
Weighted integrability of multiplicative Fourier transforms
Trudy Mat. Inst. Steklova, 269 (2010), 71–81
-
Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 4–13
-
Dyadic distributions
Mat. Sb., 198:2 (2007), 67–90
-
Modified Dyadic Integral and Fractional Derivative on $\mathbb R_+$
Mat. Zametki, 79:2 (2006), 213–233
-
Fractional Modified Dyadic Integral and Derivative on $\mathbb{R}_+$
Funktsional. Anal. i Prilozhen., 39:2 (2005), 64–70
-
A dyadic analogue of Wiener's Tauberian theorem and some related questions
Izv. RAN. Ser. Mat., 67:1 (2003), 33–58
-
A modified strong dyadic integral and derivative
Mat. Sb., 193:4 (2002), 37–60
-
On an analogue of Hardy's inequality for the Walsh–Fourier
Izv. RAN. Ser. Mat., 65:3 (2001), 3–14
-
On dyadic analogues of Hardy and Hardy–Littlewood operators
Sibirsk. Mat. Zh., 40:6 (1999), 1244–1252
-
The Hardy and Bellman transforms of the spaces $H^1$ and BMO
Mat. Zametki, 63:3 (1998), 475–478
-
An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations
Mat. Sb., 189:5 (1998), 69–86
-
Boundedness of the Hardy and the Hardy–Littlewood operators in the spaces $\operatorname {Re}H^1$ and $\mathrm {BMO}$
Mat. Sb., 188:7 (1997), 93–106
-
On a theorem of Bellman on Fourier coefficients
Mat. Sb., 185:11 (1994), 31–40
-
Absolute convergence of multiple Fourier series
Mat. Zametki, 37:1 (1985), 13–24
-
Multiple series and Fourier integrals
Itogi Nauki i Tekhn. Ser. Mat. Anal., 19 (1982), 3–54
-
Asymptotic behavior of singular multiple integrals for differentiable functions
Mat. Zametki, 30:5 (1981), 749–762
-
A generalized symmetric derivative and the summability of multiple trigonometric series by the Lebesgue method
Sibirsk. Mat. Zh., 22:6 (1981), 15–21
-
On the rate of convergence of integrals of Gauss–Weierstrass type for functions of several variables
Izv. Akad. Nauk SSSR Ser. Mat., 44:6 (1980), 1255–1278
-
The Abel-Poisson summation method for multiple Fourier series
Mat. Zametki, 27:1 (1980), 49–59
-
On convergence of singular integrals of Gauss–Weierstrass type for functions of several variables
Dokl. Akad. Nauk SSSR, 248:5 (1979), 1044–1048
-
On the summability method of Abel–Poisson type for multiple Fourier integrals
Mat. Sb. (N.S.), 108(150):2 (1979), 229–246
-
On the summability of Fourier integrals by Riesz spherical means
Mat. Sb. (N.S.), 104(146):4(12) (1977), 577–596
-
The summability of conjugate multiple Fourier integrals by Riesz means
Uspekhi Mat. Nauk, 31:5(191) (1976), 237–238
-
Approximation of functions of several variables by spherical Riesz means
Mat. Zametki, 17:2 (1975), 181–191
-
On convergence of Riesz spherical means of multiple Fourier series
Mat. Sb. (N.S.), 96(138):2 (1975), 189–211
-
Convergence of Riesz spherical means of multiple Fourier series
Dokl. Akad. Nauk SSSR, 215:1 (1974), 31–34
-
The approximation of a Hölder class of two variables by Riesz spherical means
Mat. Zametki, 15:1 (1974), 33–43
-
The convergence of the double Fourier series of functions of bounded generalized variation. II
Sibirsk. Mat. Zh., 15:4 (1974), 767–783
-
The convergence of the double Fourier series of functions of bounded generalized variation. I
Sibirsk. Mat. Zh., 15:2 (1974), 262–291
-
The asymptotic $L_p$-norm of differentiated Fourier sums of functions of bounded variation
Izv. Akad. Nauk SSSR Ser. Mat., 37:2 (1973), 399–421
-
Functions of generalized bounded variation, convergence of their Fourier series and conjugate trigonometric series
Dokl. Akad. Nauk SSSR, 205:6 (1972), 1277–1280
-
Double Fourier series, and functions of bounded variation
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 12, 55–68
-
Determination of the jump of a function of bounded $p$-variation by its Fourier series
Mat. Zametki, 12:1 (1972), 19–28
-
Asymptotic behavior of the $L_p$-norms of differentiated Fourier sums of functions of bounded variation
Uspekhi Mat. Nauk, 27:6(168) (1972), 235–236
-
On the convergence of Riesz spherical means of multiple Fourier series and integrals of functions of bounded generalized variation
Mat. Sb. (N.S.), 89(131):4(12) (1972), 630–653
-
Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials
Mat. Sb. (N.S.), 87(129):2 (1972), 254–274
-
Tests of the continuity of functions of bounded $p$-variation
Sibirsk. Mat. Zh., 13:5 (1972), 1002–1015
-
Series in the Haar system
Itogi Nauki. Ser. Matematika. Mat. Anal. 1970, 1971, 109–146
-
The $p$-variation of functions of two variables
Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 9, 40–49
-
The $p$-variation of functions
Mat. Zametki, 5:2 (1969), 195–204
-
On functions of bounded $p$-variation
Izv. Akad. Nauk SSSR Ser. Mat., 32:4 (1968), 837–858
-
The Fourier integral and the continuity of functions of bounded $p$-variation
Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 11, 83–92
-
Functions of bounded $p$-variation
Uspekhi Mat. Nauk, 23:1(139) (1968), 219–220
-
A certain class of complete orthogonal systems
Sibirsk. Mat. Zh., 9:2 (1968), 297–314
-
Continuous functions of bounded $p$-variation
Mat. Zametki, 1:3 (1967), 305–312
-
A class of convergence systems
Mat. Sb. (N.S.), 71(113):1 (1966), 96–115
-
On absolute convergence of series in Haar's system
Uspekhi Mat. Nauk, 20:5(125) (1965), 198–202
-
Fourier series of continuous functions relative to a Haar system
Dokl. Akad. Nauk SSSR, 156:2 (1964), 247–250
-
On Fourier series of continuous functions with respect to a Haar system
Izv. Akad. Nauk SSSR Ser. Mat., 28:6 (1964), 1271–1296
-
On the summability of sequences
Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 4, 47–55
-
19th International Saratov Winter School “Contemporary problems of function theory and their applications"
Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018), 354–365
-
18th International Saratov Winter School “Contemporary Problems of Function Theory and Their Applications”
Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016), 485–487
-
Evgenii Sergeevich Polovinkin (on his 70th birthday)
Uspekhi Mat. Nauk, 71:5(431) (2016), 187–190
-
Valentin Anatol'evich Skvortsov (on his 80th birthday)
Uspekhi Mat. Nauk, 71:1(427) (2016), 184–186
-
XVII International Saratov Winter School «Contemporary Problems of the Function Theory and its Applications». Dedicated to the 150th Anniversary of V. A. Steklov
Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015), 357–359
-
16 Saratov winter school “Contemporary problems of function theory and its applications”
Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012), 114–115
-
Boris Sergeevich Kashin (on his 60th birthday)
Uspekhi Mat. Nauk, 66:4(400) (2011), 189–191
-
Introduction
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 3
-
On the 80th birthday of Petr Lavrent'evich Ul'yanov
Uspekhi Mat. Nauk, 63:5(383) (2008), 203–207
-
Károly Tandori (obituary)
Uspekhi Mat. Nauk, 61:1(367) (2006), 165–168
-
Cohn D. L. Measure theory. Boston etc.: Birkhäuser, 1980, IX+373 p. (Book review)
Zh. Vychisl. Mat. Mat. Fiz., 22:4 (1982), 1016–1017
© , 2025