RUS  ENG
Full version
PEOPLE

Tyrtyshnikov Eugene Evgen'evich

Publications in Math-Net.Ru

  1. A well-posed setting of the problem of solving systems of linear algebraic equations

    Mat. Sb., 213:10 (2022),  130–138
  2. On the best approximation algorithm by low-rank matrices in Chebyshev's norm

    Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022),  723–741
  3. Common structure of reduced bases for aggregation kinetics problems of varying dimensionality

    Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022),  553–563
  4. Method for reduced basis discovery in nonstationary problems

    Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021),  31–34
  5. On the Construction of Stability Indicators for Nonnegative Matrices

    Mat. Zametki, 109:3 (2021),  407–418
  6. Numerical method for solving volume integral equations on a nonuniform grid

    Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021),  878–884
  7. New applications of matrix methods

    Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021),  691–695
  8. On stability indicators of nonnegative matrices

    Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  51–54
  9. Computation of asymptotic spectral distributions for sequences of grid operators

    Zh. Vychisl. Mat. Mat. Fiz., 60:11 (2020),  1823–1841
  10. Methods for nonnegative matrix factorization based on low-rank cross approximations

    Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019),  1314–1330
  11. Tensor decompositions for solving the equations of mathematical models of aggregation with multiple collisions of particles

    Num. Meth. Prog., 19:4 (2018),  390–404
  12. An efficient finite-difference method for solving Smoluchowski-type kinetic equations of aggregation with three-body collisions

    Num. Meth. Prog., 19:3 (2018),  261–269
  13. A parallel implementation of the matrix cross approximation method

    Num. Meth. Prog., 16:3 (2015),  369–375
  14. Evaluation of the docking algorithm based on tensor train global optimization

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015),  83–99
  15. On algebras of Hankel circulants and Hankel skew-circulants

    Zap. Nauchn. Sem. POMI, 439 (2015),  159–168
  16. Application of the multicharge approximation for large dense matrices in the framework of the polarized continuum solvent model

    Num. Meth. Prog., 15:1 (2014),  9–21
  17. A fast numerical method for solving the Smoluchowski-type kinetic equations of aggregation and fragmentation processes

    Num. Meth. Prog., 15:1 (2014),  1–8
  18. Virtual dimensions in the docking method based on tensor train decompositions

    Num. Meth. Prog., 14:3 (2013),  292–294
  19. TTDock: a docking method based on tensor train decompositions

    Num. Meth. Prog., 14:3 (2013),  279–291
  20. Functions Generating Normal Toeplitz Matrices

    Mat. Zametki, 89:4 (2011),  503–507
  21. The structure of the Hessian and the efficient implementation of Newton's method in the problem of the canonical approximation of tensors

    Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010),  979–998
  22. Approximate multiplication of tensor matrices based on the individual filtering of factors

    Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1741–1756
  23. Integration of oscillating functions in a quasi-three-dimensional electrodynamic problem

    Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009),  301–312
  24. Application of multilevel structured matrices for the solution of direct and inverse electromagnetic problems

    Num. Meth. Prog., 7:1 (2006),  1–16
  25. Approximate inversion of matrices in the process of solving a hypersingular integral equation

    Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005),  315–326
  26. Modifying the methods for the evaluations of the Chebyshev–Laguerre and the Gauss–Legendre integrals

    Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1187–1195
  27. On a case of equivalence between the collocation method and the Galerkin method

    Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004),  686–693
  28. Tensor approximations of matrices generated by asymptotically smooth functions

    Mat. Sb., 194:6 (2003),  147–160
  29. Augmentation and Modification Problems for Hermitian Matrices

    Mat. Zametki, 71:1 (2002),  130–134
  30. Some applications of a matrix criterion for equidistribution

    Mat. Sb., 192:12 (2001),  145–156
  31. Eigenvalue estimates for Hankel matrices

    Mat. Sb., 192:4 (2001),  59–72
  32. Pseudo-skeleton approximations by matrices of maximal volume

    Mat. Zametki, 62:4 (1997),  619–623
  33. On the distribution of eigenvectors of Töplitz matrices with weakened requirements on the generating function

    Uspekhi Mat. Nauk, 52:6(318) (1997),  161–162
  34. Distribution of eigenvalues and singular values of Toeplitz matrices under weakened conditions on the generating function

    Mat. Sb., 188:8 (1997),  83–92
  35. Parallel methods for generalized Toeplitz systems

    Zh. Vychisl. Mat. Mat. Fiz., 36:6 (1996),  5–19
  36. Pseudo-skeleton approximations of matrices

    Dokl. Akad. Nauk, 343:2 (1995),  151–152
  37. On the convergence of the $QR$ algorithm with multishifts

    Zap. Nauchn. Sem. POMI, 229 (1995),  275–283
  38. New theorems on the distribution of eigenvalues and singular values of multilevel Toeplitz matrices

    Dokl. Akad. Nauk, 333:3 (1993),  300–303
  39. A tribute to goodness, intelligence and talent

    Algebra i Analiz, 2:6 (1990),  10–33
  40. New fast algorithms for systems with Hankel and Toeplitz matrices

    Zh. Vychisl. Mat. Mat. Fiz., 29:5 (1989),  645–652
  41. Numerical methods for solving problems with Toeplitz matrices

    Zh. Vychisl. Mat. Mat. Fiz., 21:3 (1981),  531–544

  42. Boris Nikolaevich Chetverushkin (on his eightieth birthday)

    Uspekhi Mat. Nauk, 79:4(478) (2024),  181–187
  43. In memory of Aleksandr Sergeevich Kholodov

    Matem. Mod., 30:1 (2018),  135–136
  44. Nikolai Sergeevich Bakhvalov (on his 80th birthday)

    Uspekhi Mat. Nauk, 69:3(417) (2014),  183–185


© Steklov Math. Inst. of RAS, 2024