|
|
Publications in Math-Net.Ru
-
Schauder's fixed point theorem and Pontryagin maximum principle
Izv. RAN. Ser. Mat., 88:6 (2024), 3–22
-
Controllability of an approximately defined control system
Mat. Sb., 215:4 (2024), 3–29
-
On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions
Mat. Zametki, 114:1 (2023), 3–17
-
On the Best Recovery of a Family of Operators on the Manifold $\mathbb R^n\times \mathbb T^m$
Trudy Mat. Inst. Steklova, 323 (2023), 196–203
-
Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control
Trudy Mat. Inst. Steklova, 321 (2023), 7–30
-
Controllability of difference approximation for a control system with continuous time
Mat. Sb., 213:12 (2022), 3–30
-
A Note on the Classical Implicit Function Theorem
Mat. Zametki, 110:6 (2021), 911–915
-
Implicit Function. Controllability and Perturbation of Optimal Control Problems
Mat. Zametki, 109:4 (2021), 483–499
-
Local controllability and optimality
Mat. Sb., 212:7 (2021), 3–38
-
General Implicit Function Theorem for Close Mappings
Trudy Mat. Inst. Steklova, 315 (2021), 7–18
-
Optimal Recovery of Pipe Temperature from Inaccurate Measurements
Trudy Mat. Inst. Steklova, 312 (2021), 216–223
-
Gamkrelidze Convexification and Bogolyubov's Theorem
Mat. Zametki, 107:4 (2020), 483–497
-
Local infimum and a family of maximum principles in optimal control
Mat. Sb., 211:6 (2020), 3–39
-
Best recovery of the solution of the Dirichlet problem in a half-space from inaccurate data
Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020), 1711–1720
-
Optimal recovery of semi-group operators from inaccurate data
Eurasian Math. J., 10:4 (2019), 75–84
-
Controllability and second-order necessary conditions for optimality
Mat. Sb., 210:1 (2019), 3–26
-
Generalized Needles and Second-Order Conditions in Optimal Control
Trudy Mat. Inst. Steklova, 304 (2019), 15–31
-
An Implicit Function Theorem for Inclusions Defined by Close Mappings
Mat. Zametki, 103:4 (2018), 483–489
-
Relaxation and controllability in optimal control problems
Mat. Sb., 208:5 (2017), 3–37
-
Exactness and optimality of methods for recovering functions from their spectrum
Trudy Mat. Inst. Steklova, 293 (2016), 201–216
-
The Pontryagin maximum principle. Ab ovo usque ad mala
Trudy Mat. Inst. Steklova, 291 (2015), 215–230
-
The best approximation of a set whose elements are known approximately
Fundam. Prikl. Mat., 19:5 (2014), 127–141
-
Mix of controls and the Pontryagin maximum principle
Fundam. Prikl. Mat., 19:4 (2014), 5–20
-
On the best methods for recovering derivatives in Sobolev classes
Izv. RAN. Ser. Mat., 78:6 (2014), 83–102
-
On best harmonic synthesis of periodic functions
Fundam. Prikl. Mat., 18:5 (2013), 155–174
-
Lagrange's principle in extremum problems with constraints
Uspekhi Mat. Nauk, 68:3(411) (2013), 5–38
-
How Best to Recover a Function from Its Inaccurately Given Spectrum?
Mat. Zametki, 92:1 (2012), 59–67
-
An Implicit-Function Theorem for Inclusions
Mat. Zametki, 91:6 (2012), 813–818
-
Best recovery of the Laplace operator of a function from incomplete spectral data
Mat. Sb., 203:4 (2012), 119–130
-
О минимуме максимума гладких функций
Mat. Pros., Ser. 3, 15 (2011), 182–186
-
On Optimal Harmonic Synthesis from Inaccurate Spectral Data
Funktsional. Anal. i Prilozhen., 44:3 (2010), 76–79
-
On the reconstruction of convolution-type operators from inaccurate information
Trudy Mat. Inst. Steklova, 269 (2010), 181–192
-
Метод Ньютона и его приложения к решению уравнений и теории экстремума
Mat. Pros., Ser. 3, 13 (2009), 80–103
-
Optimal recovery of the solution of the heat equation from inaccurate data
Mat. Sb., 200:5 (2009), 37–54
-
Newton's Method, Differential Equations, and the Lagrangian Principle for Necessary Extremum Conditions
Trudy Mat. Inst. Steklova, 262 (2008), 156–177
-
Пять сюжетов о творчестве Владимира Михайловича Тихомирова
Mat. Pros., Ser. 3, 10 (2006), 8–22
-
Extremal problems for linear functionals on the Tchebycheff spaces
Fundam. Prikl. Mat., 11:2 (2005), 87–100
-
The Lagrange principle for smooth problems with constraints on a cone
Vladikavkaz. Mat. Zh., 7:4 (2005), 38–45
-
Optimal recovery of values of functions and their derivatives from inaccurate data on the Fourier transform
Mat. Sb., 195:10 (2004), 67–82
-
A generalized theorem on an inverse function, and extremal problems with constraints
Vladikavkaz. Mat. Zh., 6:4 (2004), 48–54
-
Optimal interpolation and the Lagrange principle
Vladikavkaz. Mat. Zh., 6:4 (2004), 42–47
-
Optimal Recovery of Functions and Their Derivatives from Inaccurate Information about the Spectrum and Inequalities for Derivatives
Funktsional. Anal. i Prilozhen., 37:3 (2003), 51–64
-
Indefinite Knowledge about an Object and Accuracy of Its Recovery Methods
Probl. Peredachi Inf., 39:1 (2003), 118–133
-
Optimal reconstruction of derivatives on Sobolev classes
Vladikavkaz. Mat. Zh., 5:1 (2003), 39–47
-
Optimal recovery of functions and their derivatives from Fourier coefficients
prescribed with an error
Mat. Sb., 193:3 (2002), 79–100
-
Optimal reconstruction and the theory of extremum
Dokl. Akad. Nauk, 379:2 (2001), 161–164
-
Extrema of linear functionals on finite-dimensional spaces
Uspekhi Mat. Nauk, 55:6(336) (2000), 133–134
-
Kolmogorov-type inequalities for derivatives
Mat. Sb., 188:12 (1997), 73–106
-
Exact values of widths of classes of functions in $L_2$
Dokl. Akad. Nauk, 344:5 (1995), 583–585
-
Exact values of Bernstein widths of Sobolev classes of periodic functions
Mat. Zametki, 58:1 (1995), 139–143
-
On best approximation by splines of function classes on the line
Trudy Mat. Inst. Steklov., 194 (1992), 148–159
-
Mean dimension and widths of classes of functions on the line
Dokl. Akad. Nauk SSSR, 318:1 (1991), 35–38
-
Optimal recovery of functionals based on inaccurate data
Mat. Zametki, 50:6 (1991), 85–93
-
Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line
Mat. Sb., 182:11 (1991), 1635–1656
-
On the synthesis of stabilization systems
Avtomat. i Telemekh., 1990, no. 12, 66–74
-
Exact solutions of some approximation problems by means of positive operators
Mat. Zametki, 48:3 (1990), 91–99
-
$\varphi$-mean diameters of classes of functions on the line
Uspekhi Mat. Nauk, 45:2(272) (1990), 211–212
-
Trigonometric widths of Sobolev classes of functions on $\boldsymbol R^n$
Trudy Mat. Inst. Steklov., 181 (1988), 147–155
-
On the problem of optimal recovery of functionals
Uspekhi Mat. Nauk, 42:2(254) (1987), 237–238
-
On the approximations of Sobolev classes of functions on $\boldsymbol R^n$
Trudy Mat. Inst. Steklov., 180 (1987), 154–155
-
Inequalities of Bernstein– Nikol'skii type and approximation of generalized Sobolev classes
Trudy Mat. Inst. Steklov., 173 (1986), 190–204
-
A local-optimization method for control of dynamic systems
Dokl. Akad. Nauk SSSR, 274:2 (1984), 273–275
-
Inequalities for derivatives, and duality
Trudy Mat. Inst. Steklov., 161 (1983), 183–194
-
Generalized Sobolev classes and inequalities of Bernstein–Nikol'skii type
Dokl. Akad. Nauk SSSR, 264:5 (1982), 1066–1069
-
Existence of extremal functions in inequalities for derivatives
Mat. Zametki, 32:6 (1982), 823–834
-
Problems of Bernstein and Favard type and the mean $\varepsilon$-dimension of some classes of functions
Dokl. Akad. Nauk SSSR, 249:4 (1979), 783–786
-
Intermediate derivatives
Mat. Zametki, 25:1 (1979), 81–96
-
The implicit function theorem for Lipschitz maps
Uspekhi Mat. Nauk, 33:1(199) (1978), 221–222
-
About the life and work of S. B. Stechkin (1920–1995)
Vladikavkaz. Mat. Zh., 23:4 (2021), 119–128
-
Osipenko Konstantin Yur'evich (on his 60th birthday)
Vladikavkaz. Mat. Zh., 12:1 (2010), 68–70
-
Vladimir Mikhailovich Tikhomirov (on his 70th birthday)
Uspekhi Mat. Nauk, 61:1(367) (2006), 187–190
-
Vladimir M. Tikhomirov
Mosc. Math. J., 5:1 (2005), 295
-
Vladimir Mikhaĭlovich Tikhomirov (on the occasion of his seventieth birthday)
Vladikavkaz. Mat. Zh., 6:4 (2004), 3–6
© , 2024