RUS  ENG
Full version
PEOPLE

Sorokin Andrei Semenovich

Publications in Math-Net.Ru

  1. Structural formulae for some classes of analytic functions in a finitely connected domain

    Mat. Sb., 188:12 (1997),  107–134
  2. Parametric representation of functions in finitely connected domains

    Sibirsk. Mat. Zh., 38:5 (1997),  1163–1178
  3. M. A. Lavrent'ev's variational method and the Hilbert problem for multiply connected circular domains

    Dokl. Akad. Nauk, 349:3 (1996),  308–311
  4. Keldysh–Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains

    Mat. Zametki, 58:6 (1995),  878–889
  5. The Keldysh–Sedov problem for multiply connected circular domains

    Sibirsk. Mat. Zh., 36:1 (1995),  186–202
  6. The G. M. Goluzin–P. P. Kufarev variational method and the M. V. Keldysh–L. I. Sedov formula

    Dokl. Akad. Nauk SSSR, 308:2 (1989),  273–277
  7. The homogeneous Keldysh–Sedov problem for multiply connected circular domains in the Muskhelishvili class $h_0$

    Differ. Uravn., 25:2 (1989),  283–293
  8. The Schwarz problem for functions with poles in circular multiply connected domains

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 9,  85–87
  9. The M. V. Keldysh–L. I. Sedov problem for multiply connected circular domains

    Dokl. Akad. Nauk SSSR, 296:4 (1987),  801–804
  10. Villat’s formula for generalized analytic functions

    Dokl. Akad. Nauk SSSR, 210:6 (1973),  1293–1296
  11. The Schwarz problem for multiply connected circular domains

    Sibirsk. Mat. Zh., 13:5 (1972),  971–1001
  12. On extending the variational method of G. M. Goluzin and P. P. Kufarev to a multiply connected region

    Dokl. Akad. Nauk SSSR, 175:6 (1967),  1207–1210


© Steklov Math. Inst. of RAS, 2024