RUS  ENG
Full version
PEOPLE

Alkhutov Yuriy Alexandrovich

Publications in Math-Net.Ru

  1. On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift

    CMFD, 70:1 (2024),  1–14
  2. On the Boyarsky–Meyers estimate for the gradient of the solution to the Dirichlet problem for a second-order linear elliptic equation with drift: The case of critical Sobolev exponent

    Dokl. RAN. Math. Inf. Proc. Upr., 516 (2024),  87–92
  3. Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky–Meyers estimate

    TMF, 218:1 (2024),  3–22
  4. On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent

    Ufimsk. Mat. Zh., 16:4 (2024),  3–13
  5. On higher integrability of the gradient of solutions to the Zaremba problem for $p$-Laplace equation

    Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023),  47–51
  6. Many-dimensional Zaremba problem for an inhomogeneous $p$-Laplace equation

    Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022),  37–41
  7. Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation

    Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021),  3–6
  8. Interior and boundary continuity of $p(x)$-harmonic functions

    Zap. Nauchn. Sem. POMI, 508 (2021),  7–38
  9. Hölder Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions

    Trudy Mat. Inst. Steklova, 308 (2020),  7–27
  10. Estimates of the fundamental solution for an elliptic equation in divergence form with drift

    Zap. Nauchn. Sem. POMI, 489 (2020),  7–35
  11. Harnack inequality for the elliptic $p(x)$-Laplacian with a three-phase exponent $p(x)$

    Zh. Vychisl. Mat. Mat. Fiz., 60:8 (2020),  1329–1338
  12. Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point

    Algebra i Analiz, 31:2 (2019),  88–117
  13. Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  8–56
  14. Necessary and sufficient condition for the stabilization of the solution of a mixed problem for nondivergence parabolic equations to zero

    Tr. Mosk. Mat. Obs., 75:2 (2014),  277–308
  15. Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent

    Mat. Sb., 205:3 (2014),  3–14
  16. Hölder continuity of solutions of nondivergent degenerate second-order elliptic equations

    Tr. Semim. im. I. G. Petrovskogo, 29 (2013),  5–42
  17. Harnack inequality for a class of second-order degenerate elliptic equations

    Trudy Mat. Inst. Steklova, 278 (2012),  7–15
  18. Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  8–74
  19. Existence theorems for solutions of parabolic equations with variable order of nonlinearity

    Trudy Mat. Inst. Steklova, 270 (2010),  21–32
  20. $L_p$-solubility of the Dirichlet problem for the heat operator

    Uspekhi Mat. Nauk, 64:1(385) (2009),  137–138
  21. On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity

    Trudy Mat. Inst. Steklova, 261 (2008),  7–15
  22. Hölder continuity of $p(x)$-harmonic functions

    Mat. Sb., 196:2 (2005),  3–28
  23. Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition

    Izv. RAN. Ser. Mat., 68:6 (2004),  3–60
  24. $L_p$-solubility of the Dirichlet problem for the heat equation in non-cylindrical domains

    Mat. Sb., 193:9 (2002),  3–40
  25. The leading term of the spectral asymptotics for the Kohn–Laplace operator in a bounded domain

    Mat. Zametki, 64:4 (1998),  493–505
  26. $L_p$-estimates of the solution of the Dirichlet problem for second-order elliptic equations

    Mat. Sb., 189:1 (1998),  3–20
  27. The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition

    Differ. Uravn., 33:12 (1997),  1651–1660
  28. The behavior of solutions of parabolic second-order equations in noncylindrical domains

    Dokl. Akad. Nauk, 345:5 (1995),  583–585
  29. Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain

    Differ. Uravn., 28:5 (1992),  806–818
  30. Removable singularities of solutions of second-order parabolic equations

    Mat. Zametki, 50:5 (1991),  9–17
  31. Smoothness and limiting properties of solutions of a second-order parabolic equation

    Mat. Zametki, 50:4 (1991),  150–152
  32. Local properties of solutions of non-divergent parabolic equations of second order

    Uspekhi Mat. Nauk, 45:5(275) (1990),  175–176
  33. Removable singularities of solutions of parabolic equations

    Uspekhi Mat. Nauk, 43:1(259) (1988),  189–190
  34. The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients

    Mat. Sb. (N.S.), 131(173):4(12) (1986),  477–500
  35. Some properties of the solutions of the first boundary value problem for parabolic equations with discontinuous coefficients

    Dokl. Akad. Nauk SSSR, 284:1 (1985),  11–16
  36. Regularity of boundary points relative to the Dirichlet problem for second-order elliptic equations

    Mat. Zametki, 30:3 (1981),  333–342

  37. Vasilii Vasilievich Zhikov

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  5–7
  38. Vasilii Vasil'evich Zhikov (obituary)

    Uspekhi Mat. Nauk, 73:3(441) (2018),  169–176


© Steklov Math. Inst. of RAS, 2025