RUS  ENG
Full version
PEOPLE

Svistun Mikhail Ivanovich

Publications in Math-Net.Ru

  1. Lasing on metastable neon atoms with pulsed transverse optical pumping

    Kvantovaya Elektronika, 54:9 (2024),  565–571
  2. Experimental results on the dissociation of molecular iodine in the presence of singlet oxygen molecules

    Kvantovaya Elektronika, 46:8 (2016),  706–712
  3. Centrifugal bubble O2 (1Δ) gas generator with a total pressure of 100 Torr

    Kvantovaya Elektronika, 38:8 (2008),  794–800
  4. Oxygen—iodine ejector laser with a centrifugal bubbling singlet-oxygen generator

    Kvantovaya Elektronika, 35:10 (2005),  907–908
  5. Detection of vibrationally excited O2 in the active medium of a chemical oxygen – iodine laser

    Kvantovaya Elektronika, 33:9 (2003),  811–816
  6. Effect of the solution temperature in a singlet-oxygen generator on the formation of active medium in an ejector oxygen — iodine laser

    Kvantovaya Elektronika, 32:2 (2002),  101–106
  7. Amplification and gas-dynamic parameters of the active oxygen–iodine medium produced by an ejector nozzle unit

    Kvantovaya Elektronika, 31:8 (2001),  678–682
  8. Temperature dependence of the collision broadening of the 2P1/22P3/2 line of atomic iodine

    Kvantovaya Elektronika, 31:4 (2001),  373–376
  9. Efficient chemical oxygen – iodine laser with a high total pressure of the active medium

    Kvantovaya Elektronika, 31:1 (2001),  30–34
  10. Supersonic oxygen — iodine 1.4-kW laser with a 5 cm gain length and a nitrogen-diluted active medium

    Kvantovaya Elektronika, 30:2 (2000),  161–166
  11. Luminescence of the oxygen dimole at the output of a chemical singlet-oxygen generator

    Kvantovaya Elektronika, 28:3 (1999),  212–216
  12. Efficient chemical oxygen–iodine laser with longitudinal flow of the active medium

    Kvantovaya Elektronika, 26:2 (1999),  114–116
  13. Comparative characteristics of subsonic and supersonic oxygen–iodine lasers

    Kvantovaya Elektronika, 25:5 (1998),  413–415
  14. Highly efficient supersonic chemical oxygen — iodine laser with a chlorine flow rate of 10 mmol s–1

    Kvantovaya Elektronika, 24:3 (1997),  201–205
  15. Oxygen–iodine laser with a drop-jet generator of O2(1Δ) operating at pressures up to 90 Torr

    Kvantovaya Elektronika, 22:5 (1995),  443–445
  16. Transport of high-pressure O2 (1Δ)

    Kvantovaya Elektronika, 21:3 (1994),  247–249
  17. Jet O2(#delta_1#) generator with oxygen pressures up to 13.3 kPa

    Kvantovaya Elektronika, 21:2 (1994),  129–132
  18. Compact oxygen-iodine laser with a thermally insulated jet singlet–oxygen generator

    Kvantovaya Elektronika, 21:1 (1994),  23–24
  19. An oxygen–iodine laser utilizing a high-pressure O2 (1Δ) generator

    Kvantovaya Elektronika, 18:12 (1991),  1417–1418
  20. Highly efficient jet O2 (1Δ) generator

    Kvantovaya Elektronika, 18:7 (1991),  826–832
  21. Investigation of a jet generator of O2(1Δ)

    Kvantovaya Elektronika, 16:11 (1989),  2197–2200
  22. Investigation of a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 16:8 (1989),  1587–1592
  23. Relaxation of the energy stored in an oxygen–iodine active medium containing bound iodine

    Kvantovaya Elektronika, 15:10 (1988),  2078–2086
  24. Optimization of the energy characteristics of an oxygen–iodine laser

    Kvantovaya Elektronika, 14:9 (1987),  1807–1809


© Steklov Math. Inst. of RAS, 2025