|
|
Publications in Math-Net.Ru
-
On a Berger problem
Mat. Zametki, 116:4 (2024), 578–583
-
Infinitesimal sliding bendings of compact surfaces and Euler's conjecture
Sibirsk. Mat. Zh., 64:5 (2023), 1065–1082
-
Bendable Surfaces without Visible Deformations of Their Shape
Mat. Zametki, 110:1 (2021), 119–130
-
On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1023–1026
-
New proofs of infinitesimal rigidity of convex polyhedra and convex surfaces of revolution
Sib. Èlektron. Mat. Izv., 18:2 (2021), 740–743
-
Locally Euclidean metrics and their isometric realizations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 181 (2020), 102–111
-
Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$
Sib. Èlektron. Mat. Izv., 16 (2019), 439–448
-
On a problem in the bendings theory of negatively curved surfaces
Sib. Èlektron. Mat. Izv., 15 (2018), 890–893
-
Volume polynomial for polyhedra of hexahedral type
Sib. Èlektron. Mat. Izv., 14 (2017), 1078–1087
-
The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research
Tr. Mosk. Mat. Obs., 77:2 (2016), 184–218
-
Solutions of the trivial Monge–Ampèr equation with isolated singular points
Sib. Èlektron. Mat. Izv., 13 (2016), 740–743
-
Isometric Embeddings in $\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type
Mat. Zametki, 98:3 (2015), 378–385
-
Smarandache Theorem in Hyperbolic Geometry
Zh. Mat. Fiz. Anal. Geom., 10:2 (2014), 221–232
-
Isometric Embeddings of Locally Euclidean Metrics in $\mathbb R^3$ as Conical Surfaces
Mat. Zametki, 95:2 (2014), 234–247
-
Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
Mat. Sb., 205:12 (2014), 111–140
-
On a class of inflexible polyhedra
Sibirsk. Mat. Zh., 55:5 (2014), 1175–1183
-
Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schläfli Formula
Model. Anal. Inform. Sist., 20:6 (2013), 149–161
-
On a method of volume calculation for bodies
Sib. Èlektron. Mat. Izv., 10 (2013), 615–626
-
Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles
Mat. Sb., 204:10 (2013), 127–160
-
Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries
Izv. RAN. Ser. Mat., 76:6 (2012), 153–192
-
Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature
Model. Anal. Inform. Sist., 19:6 (2012), 161–169
-
Isometric surfaces with a common mean curvature and the problem of Bonnet pairs
Mat. Sb., 203:1 (2012), 115–158
-
Algebraic methods for solution of polyhedra
Uspekhi Mat. Nauk, 66:3(399) (2011), 3–66
-
Решение циклических многоугольников
Mat. Pros., Ser. 3, 14 (2010), 83–106
-
On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces
Mat. Zametki, 87:6 (2010), 900–906
-
Approximation of plane curves by circular arcs
Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010), 1347–1356
-
On the developable ruled surfaces of low smoothness
Sibirsk. Mat. Zh., 50:5 (2009), 1163–1175
-
Locally Euclidean Metrics with a Given Geodesic Curvature of the Boundary
Trudy Mat. Inst. Steklova, 266 (2009), 218–226
-
Isometric immersions and embeddings of a flat Möbius strip in Euclidean spaces
Izv. RAN. Ser. Mat., 71:5 (2007), 197–224
-
A generalization of the Pogorelov–Stocker theorem on complete developable surfaces
Fundam. Prikl. Mat., 12:1 (2006), 247–252
-
Bending of surfaces. III
Fundam. Prikl. Mat., 12:1 (2006), 3–56
-
Some Applications of the Formula for the Volume of an Octahedron
Mat. Zametki, 76:1 (2004), 27–43
-
Around the proof of the Legendre–Cauchy lemma on convex polygons
Sibirsk. Mat. Zh., 45:4 (2004), 892–919
-
Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics
Izv. RAN. Ser. Mat., 66:2 (2002), 159–172
-
On the notion of the combinatorial $p$-parametric property for polyhedra
Sibirsk. Mat. Zh., 43:4 (2002), 823–839
-
Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases
Mat. Sb., 192:6 (2001), 89–104
-
Two-dimensional manifolds with metrics of revolution
Mat. Sb., 191:10 (2000), 87–104
-
Isometric immersions and embeddings of locally Euclidean metrics in $\mathbb R^2$
Izv. RAN. Ser. Mat., 63:6 (1999), 147–166
-
A canonical polynomial for the volume of a polyhedron
Uspekhi Mat. Nauk, 54:2(326) (1999), 165–166
-
A generalized Heron–Tartaglia formula and some of its consequences
Mat. Sb., 189:10 (1998), 105–134
-
Isometric transformations of a surface inducing conformal maps of the surface onto itself
Mat. Sb., 189:1 (1998), 119–132
-
An integral analog of the Darboux equations for immersions of two-dimensional metrics
Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 9, 49–56
-
The volume of polyhedron as a function of its metric
Fundam. Prikl. Mat., 2:4 (1996), 1235–1246
-
The polyhedron's volume as a function of length of its edges
Fundam. Prikl. Mat., 2:1 (1996), 305–307
-
The volume of a polyhedron as a function of the lengths of its edges
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 6, 89–91
-
Some remarks on the tubes of negative curvature
Fundam. Prikl. Mat., 1:4 (1995), 1033–1043
-
Quasi-conformal mappings of a surface generated by its isometric transformation, and bendings of the surface onto itself
Fundam. Prikl. Mat., 1:1 (1995), 281–288
-
Bending of surfaces. Part II
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995), 108–167
-
A minimal-degree polynomial for determining the volume of an octahedron from its metric
Uspekhi Mat. Nauk, 50:5(305) (1995), 245–246
-
On the problem of invariance of the volume of a flexible polyhedron
Uspekhi Mat. Nauk, 50:2(302) (1995), 223–224
-
A complete enumeration of centrally symmetric forms of two-dimensional metrics of constant curvature
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3, 65–68
-
On an algorithm for testing the bendability of a polyhedron
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 2, 56–61
-
To the question of smoothness of isometries
Sibirsk. Mat. Zh., 34:4 (1993), 169–176
-
Deformation of surfaces. I
Itogi Nauki i Tekhniki. Ser. Probl. Geom., 23 (1991), 131–184
-
Local theory of the bendings of surfaces
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 48 (1989), 196–270
-
Second-order infinitesimal bendings of surfaces of rotation with densification at a pole
Mat. Zametki, 45:1 (1989), 28–35
-
Isometric immersions of the Lobachevskij plane in $E^4$
Sibirsk. Mat. Zh., 30:5 (1989), 179–186
-
Investigation of the rigidity and inflexibility of analytic surfaces of revolution with flattening at the pole
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5, 29–36
-
Isometric embedding of locally Euclidean metrics in $\mathbf{R}^3$
Sibirsk. Mat. Zh., 26:3 (1985), 156–167
-
Rectangular finite element smoothly adjusted with Bell’s triangle
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 2, 74–75
-
Description of flexes of degenerate suspensions
Mat. Zametki, 33:6 (1983), 901–914
-
Smoothness of a hypersurface of positive extrinsic curvature and its fundamental forms in conjugate-harmonic coordinates
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 5–8
-
A scheme of successive approximations for immersions of two-dimensional metrics in $E^3$
Sibirsk. Mat. Zh., 19:6 (1978), 1358–1380
-
Embedding two-dimensional metrics in $E^4$
Mat. Zametki, 21:2 (1977), 137–140
-
Possible generalizations of the Minagawa–Rado Lemma on the rigidity of a surface of revolution with a fixed parallel
Mat. Zametki, 19:1 (1976), 123–132
-
On infinitesimal bendings of troughs of revolution. II
Mat. Sb. (N.S.), 99(141):1 (1976), 49–57
-
Connections between the order of smoothness of a surface and that of its metric
Sibirsk. Mat. Zh., 17:4 (1976), 916–925
-
Regularity of convex domains with a metric that is regular on Hölder classes
Sibirsk. Mat. Zh., 17:4 (1976), 907–915
-
On infinitesimal bendings of troughs of revolution. I
Mat. Sb. (N.S.), 98(140):1(9) (1975), 113–129
-
The rigidity of “corrugated” surfaces of revolution
Mat. Zametki, 14:4 (1973), 517–522
-
Formal solutions of the Hilbert problem for a ring
Mat. Zametki, 12:2 (1972), 221–232
-
Minimal surfaces with certain boundary conditions
Mat. Sb. (N.S.), 76(118):3 (1968), 368–389
-
A minimal surface as the rotation graph of a sphere
Mat. Zametki, 2:6 (1967), 645–656
-
One condition for rigidity of composite surfaces
Mat. Zametki, 2:1 (1967), 105–114
-
Certain results on infinitesimal deformations of surfaces “in the small” and “in the large”
Dokl. Akad. Nauk SSSR, 162:6 (1965), 1256–1258
-
The local structure of Darboux surfaces
Dokl. Akad. Nauk SSSR, 162:5 (1965), 1001–1004
-
A boundary-value problem with linear conjugation
Mat. Sb. (N.S.), 64(106):2 (1964), 262–274
-
A general boundary-value problem for the linear conjugate on the circle
Sibirsk. Mat. Zh., 5:1 (1964), 124–129
-
On the rigidity of certain surfaces of revolution
Mat. Sb. (N.S.), 60(102):4 (1963), 506–519
-
Infinitesimal bendings of a convex surface with a generalized translation boundary condition
Dokl. Akad. Nauk SSSR, 147:4 (1962), 793–796
-
Изгибания поверхностей и многогранников
Mat. Pros., Ser. 3, 29 (2022), 117–145
-
Хорошо ли мы знаем векторное произведение?
Mat. Pros., Ser. 3, 27 (2021), 80–98
-
Mikhail Ivanovich Shtogrin (on his 80th birthday)
Uspekhi Mat. Nauk, 74:6(450) (2019), 194–197
-
Как быстро вычислить сумму углов многоугольника?
Mat. Pros., Ser. 3, 22 (2018), 114–126
-
Nikolai Petrovich Dolbilin (on his 70th birthday)
Uspekhi Mat. Nauk, 69:1(415) (2014), 187–188
-
To memory of Leonid Evgen'evich Evtushik (25.05.1931–16.02.2013)
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 5, 69–70
-
The seventieth birthday of Yurii Akhmetovich Aminov
Zh. Mat. Fiz. Anal. Geom., 9:2 (2013), 267–272
-
Aleksei Vasil'evich Pogorelov (obituary)
Uspekhi Mat. Nauk, 58:3(351) (2003), 173–175
-
In memory of Nikolai Vladimirovich Efimov (1910–1982)
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5, 3–4
-
To the memory of Nikolai Vladimirovich Efimov
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1, 94–97
-
Nikolai Vladimirovich Efimov (obituary)
Uspekhi Mat. Nauk, 38:5(233) (1983), 111–117
-
Nikolai Vladimirovich Efimov (on his seventieth birthday)
Uspekhi Mat. Nauk, 36:3(219) (1981), 233–238
© , 2024