RUS  ENG
Full version
PEOPLE

Sabitov Idzhad Khakovich

Publications in Math-Net.Ru

  1. Isotermic coordinate system on surfaces of revolution

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 2,  29–36
  2. Research activity of the Chair of Mathematical Analysis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 1,  61–65
  3. On a Berger problem

    Mat. Zametki, 116:4 (2024),  578–583
  4. Infinitesimal sliding bendings of compact surfaces and Euler's conjecture

    Sibirsk. Mat. Zh., 64:5 (2023),  1065–1082
  5. Bendable Surfaces without Visible Deformations of Their Shape

    Mat. Zametki, 110:1 (2021),  119–130
  6. On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1023–1026
  7. New proofs of infinitesimal rigidity of convex polyhedra and convex surfaces of revolution

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  740–743
  8. Locally Euclidean metrics and their isometric realizations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 181 (2020),  102–111
  9. Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$

    Sib. Èlektron. Mat. Izv., 16 (2019),  439–448
  10. On a problem in the bendings theory of negatively curved surfaces

    Sib. Èlektron. Mat. Izv., 15 (2018),  890–893
  11. Volume polynomial for polyhedra of hexahedral type

    Sib. Èlektron. Mat. Izv., 14 (2017),  1078–1087
  12. The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research

    Tr. Mosk. Mat. Obs., 77:2 (2016),  184–218
  13. Solutions of the trivial Monge–Ampèr equation with isolated singular points

    Sib. Èlektron. Mat. Izv., 13 (2016),  740–743
  14. Isometric Embeddings in $\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type

    Mat. Zametki, 98:3 (2015),  378–385
  15. Smarandache Theorem in Hyperbolic Geometry

    Zh. Mat. Fiz. Anal. Geom., 10:2 (2014),  221–232
  16. Isometric Embeddings of Locally Euclidean Metrics in $\mathbb R^3$ as Conical Surfaces

    Mat. Zametki, 95:2 (2014),  234–247
  17. Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles

    Mat. Sb., 205:12 (2014),  111–140
  18. On a class of inflexible polyhedra

    Sibirsk. Mat. Zh., 55:5 (2014),  1175–1183
  19. Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schläfli Formula

    Model. Anal. Inform. Sist., 20:6 (2013),  149–161
  20. On a method of volume calculation for bodies

    Sib. Èlektron. Mat. Izv., 10 (2013),  615–626
  21. Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles

    Mat. Sb., 204:10 (2013),  127–160
  22. Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries

    Izv. RAN. Ser. Mat., 76:6 (2012),  153–192
  23. Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature

    Model. Anal. Inform. Sist., 19:6 (2012),  161–169
  24. Isometric surfaces with a common mean curvature and the problem of Bonnet pairs

    Mat. Sb., 203:1 (2012),  115–158
  25. Algebraic methods for solution of polyhedra

    Uspekhi Mat. Nauk, 66:3(399) (2011),  3–66
  26. Решение циклических многоугольников

    Mat. Pros., Ser. 3, 14 (2010),  83–106
  27. On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces

    Mat. Zametki, 87:6 (2010),  900–906
  28. Approximation of plane curves by circular arcs

    Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1347–1356
  29. On the developable ruled surfaces of low smoothness

    Sibirsk. Mat. Zh., 50:5 (2009),  1163–1175
  30. Locally Euclidean Metrics with a Given Geodesic Curvature of the Boundary

    Trudy Mat. Inst. Steklova, 266 (2009),  218–226
  31. Isometric immersions and embeddings of a flat Möbius strip in Euclidean spaces

    Izv. RAN. Ser. Mat., 71:5 (2007),  197–224
  32. A generalization of the Pogorelov–Stocker theorem on complete developable surfaces

    Fundam. Prikl. Mat., 12:1 (2006),  247–252
  33. Bending of surfaces. III

    Fundam. Prikl. Mat., 12:1 (2006),  3–56
  34. Some Applications of the Formula for the Volume of an Octahedron

    Mat. Zametki, 76:1 (2004),  27–43
  35. Around the proof of the Legendre–Cauchy lemma on convex polygons

    Sibirsk. Mat. Zh., 45:4 (2004),  892–919
  36. Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics

    Izv. RAN. Ser. Mat., 66:2 (2002),  159–172
  37. On the notion of the combinatorial $p$-parametric property for polyhedra

    Sibirsk. Mat. Zh., 43:4 (2002),  823–839
  38. Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases

    Mat. Sb., 192:6 (2001),  89–104
  39. Two-dimensional manifolds with metrics of revolution

    Mat. Sb., 191:10 (2000),  87–104
  40. Isometric immersions and embeddings of locally Euclidean metrics in $\mathbb R^2$

    Izv. RAN. Ser. Mat., 63:6 (1999),  147–166
  41. A canonical polynomial for the volume of a polyhedron

    Uspekhi Mat. Nauk, 54:2(326) (1999),  165–166
  42. A generalized Heron–Tartaglia formula and some of its consequences

    Mat. Sb., 189:10 (1998),  105–134
  43. Isometric transformations of a surface inducing conformal maps of the surface onto itself

    Mat. Sb., 189:1 (1998),  119–132
  44. An integral analog of the Darboux equations for immersions of two-dimensional metrics

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 9,  49–56
  45. The volume of polyhedron as a function of its metric

    Fundam. Prikl. Mat., 2:4 (1996),  1235–1246
  46. The polyhedron's volume as a function of length of its edges

    Fundam. Prikl. Mat., 2:1 (1996),  305–307
  47. The volume of a polyhedron as a function of the lengths of its edges

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 6,  89–91
  48. Some remarks on the tubes of negative curvature

    Fundam. Prikl. Mat., 1:4 (1995),  1033–1043
  49. Quasi-conformal mappings of a surface generated by its isometric transformation, and bendings of the surface onto itself

    Fundam. Prikl. Mat., 1:1 (1995),  281–288
  50. Bending of surfaces. Part II

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995),  108–167
  51. A minimal-degree polynomial for determining the volume of an octahedron from its metric

    Uspekhi Mat. Nauk, 50:5(305) (1995),  245–246
  52. On the problem of invariance of the volume of a flexible polyhedron

    Uspekhi Mat. Nauk, 50:2(302) (1995),  223–224
  53. A complete enumeration of centrally symmetric forms of two-dimensional metrics of constant curvature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3,  65–68
  54. On an algorithm for testing the bendability of a polyhedron

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 2,  56–61
  55. To the question of smoothness of isometries

    Sibirsk. Mat. Zh., 34:4 (1993),  169–176
  56. Deformation of surfaces. I

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 23 (1991),  131–184
  57. Local theory of the bendings of surfaces

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 48 (1989),  196–270
  58. Second-order infinitesimal bendings of surfaces of rotation with densification at a pole

    Mat. Zametki, 45:1 (1989),  28–35
  59. Isometric immersions of the Lobachevskij plane in $E^4$

    Sibirsk. Mat. Zh., 30:5 (1989),  179–186
  60. Investigation of the rigidity and inflexibility of analytic surfaces of revolution with flattening at the pole

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5,  29–36
  61. Isometric embedding of locally Euclidean metrics in $\mathbf{R}^3$

    Sibirsk. Mat. Zh., 26:3 (1985),  156–167
  62. Rectangular finite element smoothly adjusted with Bell’s triangle

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 2,  74–75
  63. Description of flexes of degenerate suspensions

    Mat. Zametki, 33:6 (1983),  901–914
  64. Smoothness of a hypersurface of positive extrinsic curvature and its fundamental forms in conjugate-harmonic coordinates

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6,  5–8
  65. A scheme of successive approximations for immersions of two-dimensional metrics in $E^3$

    Sibirsk. Mat. Zh., 19:6 (1978),  1358–1380
  66. Embedding two-dimensional metrics in $E^4$

    Mat. Zametki, 21:2 (1977),  137–140
  67. Possible generalizations of the Minagawa–Rado Lemma on the rigidity of a surface of revolution with a fixed parallel

    Mat. Zametki, 19:1 (1976),  123–132
  68. On infinitesimal bendings of troughs of revolution. II

    Mat. Sb. (N.S.), 99(141):1 (1976),  49–57
  69. Connections between the order of smoothness of a surface and that of its metric

    Sibirsk. Mat. Zh., 17:4 (1976),  916–925
  70. Regularity of convex domains with a metric that is regular on Hölder classes

    Sibirsk. Mat. Zh., 17:4 (1976),  907–915
  71. On infinitesimal bendings of troughs of revolution. I

    Mat. Sb. (N.S.), 98(140):1(9) (1975),  113–129
  72. The rigidity of “corrugated” surfaces of revolution

    Mat. Zametki, 14:4 (1973),  517–522
  73. Formal solutions of the Hilbert problem for a ring

    Mat. Zametki, 12:2 (1972),  221–232
  74. Minimal surfaces with certain boundary conditions

    Mat. Sb. (N.S.), 76(118):3 (1968),  368–389
  75. A minimal surface as the rotation graph of a sphere

    Mat. Zametki, 2:6 (1967),  645–656
  76. One condition for rigidity of composite surfaces

    Mat. Zametki, 2:1 (1967),  105–114
  77. Certain results on infinitesimal deformations of surfaces “in the small” and “in the large”

    Dokl. Akad. Nauk SSSR, 162:6 (1965),  1256–1258
  78. The local structure of Darboux surfaces

    Dokl. Akad. Nauk SSSR, 162:5 (1965),  1001–1004
  79. A boundary-value problem with linear conjugation

    Mat. Sb. (N.S.), 64(106):2 (1964),  262–274
  80. A general boundary-value problem for the linear conjugate on the circle

    Sibirsk. Mat. Zh., 5:1 (1964),  124–129
  81. On the rigidity of certain surfaces of revolution

    Mat. Sb. (N.S.), 60(102):4 (1963),  506–519
  82. Infinitesimal bendings of a convex surface with a generalized translation boundary condition

    Dokl. Akad. Nauk SSSR, 147:4 (1962),  793–796

  83. Изгибания поверхностей и многогранников

    Mat. Pros., Ser. 3, 29 (2022),  117–145
  84. Хорошо ли мы знаем векторное произведение?

    Mat. Pros., Ser. 3, 27 (2021),  80–98
  85. Mikhail Ivanovich Shtogrin (on his 80th birthday)

    Uspekhi Mat. Nauk, 74:6(450) (2019),  194–197
  86. Как быстро вычислить сумму углов многоугольника?

    Mat. Pros., Ser. 3, 22 (2018),  114–126
  87. Nikolai Petrovich Dolbilin (on his 70th birthday)

    Uspekhi Mat. Nauk, 69:1(415) (2014),  187–188
  88. To memory of Leonid Evgen'evich Evtushik (25.05.1931–16.02.2013)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 5,  69–70
  89. The seventieth birthday of Yurii Akhmetovich Aminov

    Zh. Mat. Fiz. Anal. Geom., 9:2 (2013),  267–272
  90. Aleksei Vasil'evich Pogorelov (obituary)

    Uspekhi Mat. Nauk, 58:3(351) (2003),  173–175
  91. In memory of Nikolai Vladimirovich Efimov (1910–1982)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5,  3–4
  92. To the memory of Nikolai Vladimirovich Efimov

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1,  94–97
  93. Nikolai Vladimirovich Efimov (obituary)

    Uspekhi Mat. Nauk, 38:5(233) (1983),  111–117
  94. Nikolai Vladimirovich Efimov (on his seventieth birthday)

    Uspekhi Mat. Nauk, 36:3(219) (1981),  233–238


© Steklov Math. Inst. of RAS, 2025