RUS  ENG
Full version
PEOPLE

Sabitov Idzhad Khakovich

Publications in Math-Net.Ru

  1. On a Berger problem

    Mat. Zametki, 116:4 (2024),  578–583
  2. Infinitesimal sliding bendings of compact surfaces and Euler's conjecture

    Sibirsk. Mat. Zh., 64:5 (2023),  1065–1082
  3. Bendable Surfaces without Visible Deformations of Their Shape

    Mat. Zametki, 110:1 (2021),  119–130
  4. On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1023–1026
  5. New proofs of infinitesimal rigidity of convex polyhedra and convex surfaces of revolution

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  740–743
  6. Locally Euclidean metrics and their isometric realizations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 181 (2020),  102–111
  7. Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$

    Sib. Èlektron. Mat. Izv., 16 (2019),  439–448
  8. On a problem in the bendings theory of negatively curved surfaces

    Sib. Èlektron. Mat. Izv., 15 (2018),  890–893
  9. Volume polynomial for polyhedra of hexahedral type

    Sib. Èlektron. Mat. Izv., 14 (2017),  1078–1087
  10. The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research

    Tr. Mosk. Mat. Obs., 77:2 (2016),  184–218
  11. Solutions of the trivial Monge–Ampèr equation with isolated singular points

    Sib. Èlektron. Mat. Izv., 13 (2016),  740–743
  12. Isometric Embeddings in $\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type

    Mat. Zametki, 98:3 (2015),  378–385
  13. Smarandache Theorem in Hyperbolic Geometry

    Zh. Mat. Fiz. Anal. Geom., 10:2 (2014),  221–232
  14. Isometric Embeddings of Locally Euclidean Metrics in $\mathbb R^3$ as Conical Surfaces

    Mat. Zametki, 95:2 (2014),  234–247
  15. Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles

    Mat. Sb., 205:12 (2014),  111–140
  16. On a class of inflexible polyhedra

    Sibirsk. Mat. Zh., 55:5 (2014),  1175–1183
  17. Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schläfli Formula

    Model. Anal. Inform. Sist., 20:6 (2013),  149–161
  18. On a method of volume calculation for bodies

    Sib. Èlektron. Mat. Izv., 10 (2013),  615–626
  19. Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles

    Mat. Sb., 204:10 (2013),  127–160
  20. Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries

    Izv. RAN. Ser. Mat., 76:6 (2012),  153–192
  21. Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature

    Model. Anal. Inform. Sist., 19:6 (2012),  161–169
  22. Isometric surfaces with a common mean curvature and the problem of Bonnet pairs

    Mat. Sb., 203:1 (2012),  115–158
  23. Algebraic methods for solution of polyhedra

    Uspekhi Mat. Nauk, 66:3(399) (2011),  3–66
  24. Решение циклических многоугольников

    Mat. Pros., Ser. 3, 14 (2010),  83–106
  25. On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces

    Mat. Zametki, 87:6 (2010),  900–906
  26. Approximation of plane curves by circular arcs

    Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1347–1356
  27. On the developable ruled surfaces of low smoothness

    Sibirsk. Mat. Zh., 50:5 (2009),  1163–1175
  28. Locally Euclidean Metrics with a Given Geodesic Curvature of the Boundary

    Trudy Mat. Inst. Steklova, 266 (2009),  218–226
  29. Isometric immersions and embeddings of a flat Möbius strip in Euclidean spaces

    Izv. RAN. Ser. Mat., 71:5 (2007),  197–224
  30. A generalization of the Pogorelov–Stocker theorem on complete developable surfaces

    Fundam. Prikl. Mat., 12:1 (2006),  247–252
  31. Bending of surfaces. III

    Fundam. Prikl. Mat., 12:1 (2006),  3–56
  32. Some Applications of the Formula for the Volume of an Octahedron

    Mat. Zametki, 76:1 (2004),  27–43
  33. Around the proof of the Legendre–Cauchy lemma on convex polygons

    Sibirsk. Mat. Zh., 45:4 (2004),  892–919
  34. Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics

    Izv. RAN. Ser. Mat., 66:2 (2002),  159–172
  35. On the notion of the combinatorial $p$-parametric property for polyhedra

    Sibirsk. Mat. Zh., 43:4 (2002),  823–839
  36. Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases

    Mat. Sb., 192:6 (2001),  89–104
  37. Two-dimensional manifolds with metrics of revolution

    Mat. Sb., 191:10 (2000),  87–104
  38. Isometric immersions and embeddings of locally Euclidean metrics in $\mathbb R^2$

    Izv. RAN. Ser. Mat., 63:6 (1999),  147–166
  39. A canonical polynomial for the volume of a polyhedron

    Uspekhi Mat. Nauk, 54:2(326) (1999),  165–166
  40. A generalized Heron–Tartaglia formula and some of its consequences

    Mat. Sb., 189:10 (1998),  105–134
  41. Isometric transformations of a surface inducing conformal maps of the surface onto itself

    Mat. Sb., 189:1 (1998),  119–132
  42. An integral analog of the Darboux equations for immersions of two-dimensional metrics

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 9,  49–56
  43. The volume of polyhedron as a function of its metric

    Fundam. Prikl. Mat., 2:4 (1996),  1235–1246
  44. The polyhedron's volume as a function of length of its edges

    Fundam. Prikl. Mat., 2:1 (1996),  305–307
  45. The volume of a polyhedron as a function of the lengths of its edges

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 6,  89–91
  46. Some remarks on the tubes of negative curvature

    Fundam. Prikl. Mat., 1:4 (1995),  1033–1043
  47. Quasi-conformal mappings of a surface generated by its isometric transformation, and bendings of the surface onto itself

    Fundam. Prikl. Mat., 1:1 (1995),  281–288
  48. Bending of surfaces. Part II

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995),  108–167
  49. A minimal-degree polynomial for determining the volume of an octahedron from its metric

    Uspekhi Mat. Nauk, 50:5(305) (1995),  245–246
  50. On the problem of invariance of the volume of a flexible polyhedron

    Uspekhi Mat. Nauk, 50:2(302) (1995),  223–224
  51. A complete enumeration of centrally symmetric forms of two-dimensional metrics of constant curvature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3,  65–68
  52. On an algorithm for testing the bendability of a polyhedron

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 2,  56–61
  53. To the question of smoothness of isometries

    Sibirsk. Mat. Zh., 34:4 (1993),  169–176
  54. Deformation of surfaces. I

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 23 (1991),  131–184
  55. Local theory of the bendings of surfaces

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 48 (1989),  196–270
  56. Second-order infinitesimal bendings of surfaces of rotation with densification at a pole

    Mat. Zametki, 45:1 (1989),  28–35
  57. Isometric immersions of the Lobachevskij plane in $E^4$

    Sibirsk. Mat. Zh., 30:5 (1989),  179–186
  58. Investigation of the rigidity and inflexibility of analytic surfaces of revolution with flattening at the pole

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5,  29–36
  59. Isometric embedding of locally Euclidean metrics in $\mathbf{R}^3$

    Sibirsk. Mat. Zh., 26:3 (1985),  156–167
  60. Rectangular finite element smoothly adjusted with Bell’s triangle

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 2,  74–75
  61. Description of flexes of degenerate suspensions

    Mat. Zametki, 33:6 (1983),  901–914
  62. Smoothness of a hypersurface of positive extrinsic curvature and its fundamental forms in conjugate-harmonic coordinates

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6,  5–8
  63. A scheme of successive approximations for immersions of two-dimensional metrics in $E^3$

    Sibirsk. Mat. Zh., 19:6 (1978),  1358–1380
  64. Embedding two-dimensional metrics in $E^4$

    Mat. Zametki, 21:2 (1977),  137–140
  65. Possible generalizations of the Minagawa–Rado Lemma on the rigidity of a surface of revolution with a fixed parallel

    Mat. Zametki, 19:1 (1976),  123–132
  66. On infinitesimal bendings of troughs of revolution. II

    Mat. Sb. (N.S.), 99(141):1 (1976),  49–57
  67. Connections between the order of smoothness of a surface and that of its metric

    Sibirsk. Mat. Zh., 17:4 (1976),  916–925
  68. Regularity of convex domains with a metric that is regular on Hölder classes

    Sibirsk. Mat. Zh., 17:4 (1976),  907–915
  69. On infinitesimal bendings of troughs of revolution. I

    Mat. Sb. (N.S.), 98(140):1(9) (1975),  113–129
  70. The rigidity of “corrugated” surfaces of revolution

    Mat. Zametki, 14:4 (1973),  517–522
  71. Formal solutions of the Hilbert problem for a ring

    Mat. Zametki, 12:2 (1972),  221–232
  72. Minimal surfaces with certain boundary conditions

    Mat. Sb. (N.S.), 76(118):3 (1968),  368–389
  73. A minimal surface as the rotation graph of a sphere

    Mat. Zametki, 2:6 (1967),  645–656
  74. One condition for rigidity of composite surfaces

    Mat. Zametki, 2:1 (1967),  105–114
  75. Certain results on infinitesimal deformations of surfaces “in the small” and “in the large”

    Dokl. Akad. Nauk SSSR, 162:6 (1965),  1256–1258
  76. The local structure of Darboux surfaces

    Dokl. Akad. Nauk SSSR, 162:5 (1965),  1001–1004
  77. A boundary-value problem with linear conjugation

    Mat. Sb. (N.S.), 64(106):2 (1964),  262–274
  78. A general boundary-value problem for the linear conjugate on the circle

    Sibirsk. Mat. Zh., 5:1 (1964),  124–129
  79. On the rigidity of certain surfaces of revolution

    Mat. Sb. (N.S.), 60(102):4 (1963),  506–519
  80. Infinitesimal bendings of a convex surface with a generalized translation boundary condition

    Dokl. Akad. Nauk SSSR, 147:4 (1962),  793–796

  81. Изгибания поверхностей и многогранников

    Mat. Pros., Ser. 3, 29 (2022),  117–145
  82. Хорошо ли мы знаем векторное произведение?

    Mat. Pros., Ser. 3, 27 (2021),  80–98
  83. Mikhail Ivanovich Shtogrin (on his 80th birthday)

    Uspekhi Mat. Nauk, 74:6(450) (2019),  194–197
  84. Как быстро вычислить сумму углов многоугольника?

    Mat. Pros., Ser. 3, 22 (2018),  114–126
  85. Nikolai Petrovich Dolbilin (on his 70th birthday)

    Uspekhi Mat. Nauk, 69:1(415) (2014),  187–188
  86. To memory of Leonid Evgen'evich Evtushik (25.05.1931–16.02.2013)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 5,  69–70
  87. The seventieth birthday of Yurii Akhmetovich Aminov

    Zh. Mat. Fiz. Anal. Geom., 9:2 (2013),  267–272
  88. Aleksei Vasil'evich Pogorelov (obituary)

    Uspekhi Mat. Nauk, 58:3(351) (2003),  173–175
  89. In memory of Nikolai Vladimirovich Efimov (1910–1982)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5,  3–4
  90. To the memory of Nikolai Vladimirovich Efimov

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1,  94–97
  91. Nikolai Vladimirovich Efimov (obituary)

    Uspekhi Mat. Nauk, 38:5(233) (1983),  111–117
  92. Nikolai Vladimirovich Efimov (on his seventieth birthday)

    Uspekhi Mat. Nauk, 36:3(219) (1981),  233–238


© Steklov Math. Inst. of RAS, 2024