RUS  ENG
Full version
PEOPLE

Fedorov Gennadii Mikhailovich

Publications in Math-Net.Ru

  1. Broadening and shift of the spectral lines of hydrogen atoms and silicon ions in laser plasma

    Kvantovaya Elektronika, 45:6 (2015),  527–532
  2. Formation of nanostructures upon laser ablation of a binary Six(SiO2)1-x mixture

    Kvantovaya Elektronika, 37:4 (2007),  366–371
  3. Percolation and emission spectra of a laser plasma upon ablation of silicon and silicon-containing composites

    Kvantovaya Elektronika, 36:5 (2006),  435–439
  4. Formation of a coupled state in a laser plume

    Kvantovaya Elektronika, 35:4 (2005),  347–350
  5. Percolation upon expansion of nanosecond-pulse-produced laser plasma into a gas

    Kvantovaya Elektronika, 35:1 (2005),  48–52
  6. Effect of the electronic structure of target atomson the emission continuum of laser plasma

    Kvantovaya Elektronika, 34:6 (2004),  524–530
  7. Fractal structures in a laser plume

    Kvantovaya Elektronika, 33:1 (2003),  57–68
  8. Efficiency of fractal structure formation during laser evaporation

    Kvantovaya Elektronika, 32:5 (2002),  437–442
  9. Percolation in disperse plasma of laser jet

    TVT, 37:1 (1999),  13–17
  10. Percolation in a laser plume near the surface of a ternary Al – Cu – MgF2 target

    Kvantovaya Elektronika, 25:10 (1998),  951–953
  11. Microwave conductivity of a plume formed by laser evaporation of materials

    Kvantovaya Elektronika, 23:11 (1996),  1033–1036
  12. Rapid formation of macroscopic fractal structures by the plasma of a laser discharge

    Kvantovaya Elektronika, 20:6 (1993),  527–528
  13. Optical discharge in liquids

    TVT, 28:6 (1990),  1048–1055
  14. Optical discharges in fused quartz

    TVT, 27:5 (1989),  833–841
  15. FLOW FORMATION DURING PROPAGATION OF ABSORPTION WAVES IN GLASS

    Zhurnal Tekhnicheskoi Fiziki, 56:4 (1986),  767–771
  16. Investigation of the initial stage of laser damage to glass by optical and microwave methods

    Kvantovaya Elektronika, 13:6 (1986),  1180–1184
  17. Structure of an axisymmetrical nonstationary wave of absorption of laser radiation in a transparent dielectric

    Prikl. Mekh. Tekh. Fiz., 26:2 (1985),  15–17
  18. On the complex structure of a two-dimensional thermal wave that absorbs laser radiation

    Zh. Vychisl. Mat. Mat. Fiz., 25:6 (1985),  946–947
  19. Kinetics of subthreshold luminescence and microwave conductivity of glasses under laser heating conditions

    Kvantovaya Elektronika, 11:9 (1984),  1862–1864
  20. STRUCTURE OF THE FRONT OF ABSORPTION WAVE OF THE INTENSIVE OPTIC RADIATION IN SEMICONDUCTOR

    Zhurnal Tekhnicheskoi Fiziki, 53:7 (1983),  1245–1248
  21. EFFECT OF THE ENERGY-GAP DECREASE ON RATE OF ABSORPTION WAVE IN TRANSPARENT DIELECTRICS

    Zhurnal Tekhnicheskoi Fiziki, 53:4 (1983),  778–781
  22. Temperature dependence of the absorption coefficient of optical glasses exposed to laser radiation

    Kvantovaya Elektronika, 6:2 (1979),  337–344
  23. Dynamics of contraction of a laser beam due to thermal transient self-focusing

    Kvantovaya Elektronika, 5:2 (1978),  438–440
  24. Nonlinear focal region formed in transient thermal selffocusing of laser radiation in optical glass

    Kvantovaya Elektronika, 4:8 (1977),  1754–1760
  25. Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses

    Kvantovaya Elektronika, 4:2 (1977),  464–467
  26. Effects of millisecond laser pulses on radiation-colored K-8 glass

    Kvantovaya Elektronika, 3:7 (1976),  1570–1576
  27. On the thermal mechanism of optical glass destruction by laser radiation

    Dokl. Akad. Nauk SSSR, 211:6 (1973),  1317–1319


© Steklov Math. Inst. of RAS, 2024