RUS  ENG
Full version
PEOPLE

Raigorodskii Andrei Mikhailovich

Publications in Math-Net.Ru

  1. A note on Borsuk’s problem in Minkowski spaces

    Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024),  100–104
  2. Estimates of the Number of Edges in Subgraphs of Johnson Graphs

    Mat. Zametki, 115:2 (2024),  266–275
  3. Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph

    Mat. Sb., 215:5 (2024),  71–95
  4. Experimental comparison of PageRank vector calculation algorithms

    Computer Research and Modeling, 15:2 (2023),  369–379
  5. The model of two-level intergroup competition

    Computer Research and Modeling, 15:2 (2023),  355–368
  6. Stochastic optimization in digital pre-distortion of the signal

    Computer Research and Modeling, 14:2 (2022),  399–416
  7. Erratum to: On Ramsey numbers for arbitrary sequences of graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022),  485
  8. On Ramsey numbers for arbitrary sequences of graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022),  19–22
  9. Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{<}s)$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 205 (2022),  16–21
  10. Asymptotics of the Independence Number of a Random Subgraph of the Graph $G(n,r,<s)$

    Mat. Zametki, 111:1 (2022),  107–116
  11. Estimate of the number of edges in subgraphs of a Johnson graph

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  40–43
  12. Asymptotics of the independence number of a random subgraph of the graph $G(n,r,<s)$

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  17–19
  13. Bounds on Borsuk numbers in distance graphs of a special type

    Probl. Peredachi Inf., 57:2 (2021),  44–50
  14. On dividing sets into parts of smaller diameter

    Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  74–77
  15. New bounds for the clique-chromatic numbers of Johnson graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  78–80
  16. Modularity of some distance graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  71–73
  17. A Generalization of Kneser Graphs

    Mat. Zametki, 107:3 (2020),  351–365
  18. Estimate of the Number of Edges in Special Subgraphs of a Distance Graph

    Mat. Zametki, 107:2 (2020),  286–298
  19. On stability of the independence number of a certain distance graph

    Probl. Peredachi Inf., 56:4 (2020),  50–63
  20. Extremal problems in hypergraph colourings

    Uspekhi Mat. Nauk, 75:1(451) (2020),  95–154
  21. Systems of Representatives

    Mat. Zametki, 106:3 (2019),  387–394
  22. A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics $\ell_1$ and $\ell_2$

    Mat. Zametki, 105:2 (2019),  187–213
  23. Clique Chromatic Numbers of Intersection Graphs

    Mat. Zametki, 105:1 (2019),  142–144
  24. Maximum defect of an admissible octahedron in a rational lattice

    Uspekhi Mat. Nauk, 74:3(447) (2019),  191–192
  25. On rational analogs of Nelson–Hadwiger's and Borsuk's problems

    Chebyshevskii Sb., 19:3 (2018),  270–281
  26. On the chromatic numbers of some distance graphs

    Dokl. Akad. Nauk, 482:6 (2018),  648–650
  27. On a bound in extremal combinatorics

    Dokl. Akad. Nauk, 478:3 (2018),  271–273
  28. On the number of edges of a uniform hypergraph with a range of allowed intersections

    Probl. Peredachi Inf., 53:4 (2017),  16–42
  29. Графы с большим хроматическим числом и большим обхватом

    Mat. Pros., Ser. 3, 20 (2016),  228–237
  30. 2-Colorings of Uniform Hypergraphs

    Mat. Zametki, 100:4 (2016),  623–626
  31. Defect of an Admissible Octahedron in a Centering of an Integer Lattice Generated by a Given Number of Vectors

    Mat. Zametki, 99:3 (2016),  457–459
  32. Asymptotic study of the maximum number of edges in a uniform hypergraph with one forbidden intersection

    Mat. Sb., 207:5 (2016),  17–42
  33. On embedding random graphs into distance graphs and graphs of diameters in Euclidean spaces

    Chebyshevskii Sb., 16:2 (2015),  133–143
  34. Независимость и доказательства существования в комбинаторике

    Mat. Pros., Ser. 3, 19 (2015),  164–177
  35. Lovász' Theorem on the Chromatic Number of Spheres Revisited

    Mat. Zametki, 98:3 (2015),  470–471
  36. On the Realization of Subgraphs of a Random Graph by Diameter Graphs in Euclidean Spaces

    Mat. Zametki, 97:5 (2015),  699–717
  37. New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances

    Mat. Zametki, 97:2 (2015),  255–261
  38. Random graphs: models and asymptotic characteristics

    Uspekhi Mat. Nauk, 70:1(421) (2015),  35–88
  39. Independence numbers and chromatic numbers of the random subgraphs of some distance graphs

    Mat. Sb., 206:10 (2015),  3–36
  40. Improvements of the Frankl–Rödl theorem on the number of edges of a hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a space with forbidden equilateral triangle

    Trudy Mat. Inst. Steklova, 288 (2015),  109–119
  41. On the Chromatic Number of Euclidean Space with Two Forbidden Distances

    Mat. Zametki, 96:5 (2014),  790–793
  42. New Upper Bounds for the Independence Numbers of Graphs with Vertices in $\{-1,0,1\}^n$ and Their Applications to Problems of the Chromatic Numbers of Distance Graphs

    Mat. Zametki, 96:1 (2014),  138–147
  43. On the chromatic number of a space with forbidden equilateral triangle

    Mat. Sb., 205:9 (2014),  97–120
  44. On large subgraphs with small chromatic numbers contained in distance graphs

    CMFD, 51 (2013),  64–73
  45. New lower bounds for the chromatic number of a space with forbidden isosceles triangles

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 125 (2013),  252–268
  46. Chromatic Numbers of Spaces with Forbidden Monochromatic Triangles

    Mat. Zametki, 93:1 (2013),  117–126
  47. New estimates in the problem of the number of edges in a hypergraph with forbidden intersections

    Probl. Peredachi Inf., 49:4 (2013),  98–104
  48. A new lower bound for the chromatic number of the rational space

    Uspekhi Mat. Nauk, 68:5(413) (2013),  183–184
  49. Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii

    Mat. Sb., 204:10 (2013),  47–90
  50. Distance graphs having large chromatic numbers and containing no cliques or cycles of a given size

    Mat. Sb., 204:4 (2013),  49–78
  51. Задача Эрдёша – Гинзбурга – Зива и ее окрестности

    Mat. Pros., Ser. 3, 16 (2012),  132–144
  52. New Lower Bounds for the Independence Numbers of Distance Graphs with Vertices in $\{-1,0,1\}^n$

    Mat. Zametki, 89:2 (2011),  319–320
  53. The Erdős–Hajnal problem of hypergraph colouring, its generalizations, and related problems

    Uspekhi Mat. Nauk, 66:5(401) (2011),  109–182
  54. Distance Graphs with Large Chromatic Number and without Large Cliques

    Mat. Zametki, 87:3 (2010),  417–428
  55. Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter

    Mat. Zametki, 87:2 (2010),  233–245
  56. Lower bounds for the independence numbers of some distance graphs with vertices in $\{-1,0,1\}^n$

    Dokl. Akad. Nauk, 427:4 (2009),  458–460
  57. On the realization of random graphs as distance graphs in spaces of fixed dimension

    Dokl. Akad. Nauk, 424:3 (2009),  315–317
  58. On the Independence Number of Distance Graphs with Vertices in $\{-1,0,1\}^n$

    Mat. Zametki, 86:5 (2009),  794–796
  59. On the Ramsey numbers for complete distance graphs with vertices in $\{0,1\}^n$

    Mat. Sb., 200:12 (2009),  63–80
  60. Estimating the chromatic numbers of Euclidean space by convex minimization methods

    Mat. Sb., 200:6 (2009),  3–22
  61. On the Nelson–Erdős–Hadwiger problem for a series of metric spaces

    Chebyshevskii Sb., 9:1 (2008),  158–168
  62. On the chromatic number of $\mathbb R^9$

    Fundam. Prikl. Mat., 14:5 (2008),  139–154
  63. On a Series of Problems Related to the Borsuk and Nelson–Erdős–Hadwiger Problems

    Mat. Zametki, 84:2 (2008),  254–272
  64. On the Chromatic Number of Euclidean Space and the Borsuk Problem

    Mat. Zametki, 83:4 (2008),  636–639
  65. Chromatic numbers of real and rational spaces with real or rational forbidden distances

    Mat. Sb., 199:4 (2008),  107–142
  66. Chromatic Numbers of Metric Spaces

    CMFD, 23 (2007),  165–168
  67. Around Borsuk's Hypothesis

    CMFD, 23 (2007),  147–164
  68. On Ramsey Numbers for Special Complete Distance Graphs

    Mat. Zametki, 82:3 (2007),  477–480
  69. Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances

    Mat. Zametki, 81:5 (2007),  733–743
  70. On distance graphs with large chromatic number but without large simplices

    Uspekhi Mat. Nauk, 62:6(378) (2007),  187–188
  71. On a problem in the geometry of numbers

    Tr. Inst. Mat., 15:1 (2007),  111–117
  72. On the structure of distance graphs with large chromatic numbers

    Mat. Zametki, 80:3 (2006),  473–475
  73. On the Borsuk and Erdös–Hadwiger numbers

    Mat. Zametki, 79:6 (2006),  913–924
  74. The Nelson–Erdős–Hadwiger problem and a space realization of a random graph

    Uspekhi Mat. Nauk, 61:4(370) (2006),  195–196
  75. Хроматические числа дистанционных графов

    Chebyshevskii Sb., 6:3 (2005),  159–170
  76. О структуре графов расстояний, имеющих большое хроматическое число

    Chebyshevskii Sb., 6:3 (2005),  151–158
  77. Colorings of spaces, and random graphs

    Fundam. Prikl. Mat., 11:6 (2005),  131–141
  78. The problems of Borsuk and Grünbaum on lattice polytopes

    Izv. RAN. Ser. Mat., 69:3 (2005),  81–108
  79. The connection between the Borsuk and Erdös–Hadwiger problems

    Uspekhi Mat. Nauk, 60:4(364) (2005),  219–220
  80. The Erdős–Hadwiger problem and the chromatic numbers of finite geometric graphs

    Mat. Sb., 196:1 (2005),  123–156
  81. The chromatic number of a space with the metric $l_q$

    Uspekhi Mat. Nauk, 59:5(359) (2004),  161–162
  82. On lower bounds for Borsuk and Hadwiger numbers

    Uspekhi Mat. Nauk, 59:3(357) (2004),  177–178
  83. The Erdős–Hadwiger problem and the chromatic numbers of finite geometric graphs

    Dokl. Akad. Nauk, 392:3 (2003),  313–317
  84. On Borsuk"s Problem in $\mathbb R^3$

    Mat. Zametki, 74:1 (2003),  149–151
  85. The Borsuk and Hadwiger problems and systems of vectors with restrictions on scalar products

    Uspekhi Mat. Nauk, 57:3(345) (2002),  159–160
  86. The Borsuk problem for integral polytopes

    Mat. Sb., 193:10 (2002),  139–160
  87. Borsuk's problem and the chromatic numbers of some metric spaces

    Uspekhi Mat. Nauk, 56:1(337) (2001),  107–146
  88. A Probabilistic Approach to the Problem of the Defects of Admissible Sets in a Lattice

    Mat. Zametki, 68:6 (2000),  910–916
  89. On the chromatic number of a space

    Uspekhi Mat. Nauk, 55:2(332) (2000),  147–148
  90. Systems of common representatives

    Fundam. Prikl. Mat., 5:3 (1999),  851–860
  91. On a bound in Borsuk's problem

    Uspekhi Mat. Nauk, 54:2(326) (1999),  185–186
  92. The defects of admissible balls and octahedra in a lattice, and systems of generic representatives

    Mat. Sb., 189:6 (1998),  117–141
  93. On the dimension in Borsuk's problem

    Uspekhi Mat. Nauk, 52:6(318) (1997),  181–182

  94. Пересечения и раскраски

    Kvant, 2024, no. 5-6,  8–12
  95. The Third Conference of Russian Mathematical Centers

    Uspekhi Mat. Nauk, 79:1(475) (2024),  191–194
  96. Alexey Yakovlevich Kanel-Belov

    Chebyshevskii Sb., 24:4 (2023),  380–400
  97. Еще об одной “олимпиадной” задаче про графы, или Еще одна задача о раскраске

    Kvant, 2023, no. 3,  14–19
  98. Ещё немного о математике раскрасок

    Mat. Pros., Ser. 3, 31 (2023),  55–73
  99. Математика раскрасок

    Mat. Pros., Ser. 3, 27 (2021),  99–127
  100. Одна задача о раскраске

    Kvant, 2019, no. 8,  15–22
  101. Прорыв в задаче о раскраске плоскости

    Kvant, 2018, no. 11,  2–9
  102. Остроугольные множества

    Kvant, 2018, no. 3,  10–13
  103. Об одной «олимпиадной» задаче про графы

    Kvant, 2017, no. 2,  2–8
  104. Задачи о пересечениях множеств

    Kvant, 2016, no. 5-6,  2–5
  105. Об одной «олимпиадной» задаче про графы расстояний

    Kvant, 2015, no. 3,  7–10
  106. Дискретный анализ для математиков и программистов (подборка задач)

    Mat. Pros., Ser. 3, 17 (2013),  162–181
  107. Математические модели интернета

    Kvant, 2012, no. 4,  12–16
  108. Гипотеза Кнезера и топологический метод в комбинаторике

    Kvant, 2011, no. 1,  7–15
  109. Студенческие олимпиады мехмата МГУ

    Mat. Pros., Ser. 3, 14 (2010),  225–234
  110. Задача Эрдеша–Секереша: продолжение истории

    Kvant, 2009, no. 5,  13–18
  111. Задача Эрдеша–Секереша о выпуклых многоугольниках

    Kvant, 2009, no. 2,  6–13
  112. Школа «Комбинаторная математика и теория алгоритмов»

    Kvant, 2008, no. 6,  59–60
  113. Хроматические числа

    Kvant, 2008, no. 3,  13–22
  114. Студенческие олимпиады и межкафедральный семинар на мехмате Московского государственного университета

    Mat. Pros., Ser. 3, 12 (2008),  205–222


© Steklov Math. Inst. of RAS, 2024