RUS  ENG
Full version
PEOPLE

Slutskij Andrey Semenovich

Publications in Math-Net.Ru

  1. Homogenization of the scalar boundary value problem in a thin periodically broken cylinder

    Sibirsk. Mat. Zh., 65:2 (2024),  374–394
  2. The buffer boundary layer in a mixed boundary value problem with contrasting coefficients

    Sib. Zh. Ind. Mat., 14:4 (2011),  63–75
  3. Homogenization of a thin plate reinforced with periodic families of rigid rods

    Mat. Sb., 202:8 (2011),  41–80
  4. Homogenization of a mixed boundary-value problem in a domain with anisotropic fractal perforation

    Izv. RAN. Ser. Mat., 74:2 (2010),  165–194
  5. Averaging of an elliptic system under condensing perforation of a domain

    Algebra i Analiz, 17:6 (2005),  125–160
  6. Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction

    Mat. Zametki, 78:6 (2005),  878–891
  7. Korn's inequality for an arbitrary system of distorted thin rods

    Sibirsk. Mat. Zh., 43:6 (2002),  1319–1331
  8. Arbitrary Plane Systems of Anisotropic Beams

    Trudy Mat. Inst. Steklova, 236 (2002),  234–261
  9. One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification

    Izv. RAN. Ser. Mat., 64:3 (2000),  97–130
  10. Asymptotic behaviour of solutions of boundary-value problems for equations with rapidly oscillating coefficients in a domain with a small cavity

    Mat. Sb., 189:9 (1998),  107–142
  11. Averaging of differential equations on a fine grid

    Dokl. Akad. Nauk SSSR, 293:4 (1987),  792–796
  12. Asymptotic behavior of degenerate elliptic equations of second order with small disturbance of domain boundary

    Mat. Zametki, 37:1 (1985),  63–71
  13. A property of solutions of nonlinear equations of equilibrium near a singularity

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 9,  36–39


© Steklov Math. Inst. of RAS, 2024