RUS  ENG
Full version
PEOPLE

Avkhadiev Farit Gabidinovich

Publications in Math-Net.Ru

  1. An analog of the Poincaré metric and isoperimetric constants

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 9,  92–99
  2. Integral estimates of solutions to boundary values problems for the Poisson equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10,  70–76
  3. Extremal problems in geometric function theory

    Uspekhi Mat. Nauk, 78:2(470) (2023),  3–70
  4. Integral Hardy inequalities, their generalizations and related inequalities

    Ufimsk. Mat. Zh., 15:4 (2023),  3–19
  5. Embedding theorems related to torsional rigidity and principal frequency

    Izv. RAN. Ser. Mat., 86:1 (2022),  3–35
  6. Hardy-type inequalities with sharp constants in domains lambda-close to convex

    Sibirsk. Mat. Zh., 63:3 (2022),  481–499
  7. Universal inequalities on domains in Euclidean space and their applications

    Ufimsk. Mat. Zh., 14:3 (2022),  3–16
  8. Hardy type inequalities involving gradient of distance function

    Ufimsk. Mat. Zh., 13:3 (2021),  3–16
  9. Properties and applications of the distance functions on open sets of the Euclidean space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4,  87–92
  10. Conformally invariant inequalities in domains in Euclidean space

    Izv. RAN. Ser. Mat., 83:5 (2019),  3–26
  11. On extremal domains for integral inequalities in the Euclidean space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 6,  80–84
  12. One-parameter monotone functionals connected with Stieltjes integrals

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4,  3–14
  13. Conformal invariants of hyperbolic planar domains

    Ufimsk. Mat. Zh., 11:2 (2019),  3–18
  14. Integral inequalities of Hardy and Rellich in domains satisfying an exterior sphere condition

    Algebra i Analiz, 30:2 (2018),  18–44
  15. Brezis–Marcus Problem and Its Generalizations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 153 (2018),  3–12
  16. $L_p$-versions of one conformally invariant inequality

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8,  88–92
  17. On Rellich's inequalities in the Euclidean spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8,  83–87
  18. Rellich inequalities for polyharmonic operators in plane domains

    Mat. Sb., 209:3 (2018),  4–33
  19. Conformally invariant inequalities

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 142 (2017),  28–41
  20. The generalized Davies problem for polyharmonic operators

    Sibirsk. Mat. Zh., 58:6 (2017),  1205–1217
  21. Estimates of Hardy–Rellich constants for polyharmonic operators and their generalizations

    Ufimsk. Mat. Zh., 9:3 (2017),  8–17
  22. Conformal mappings of circular domains on finitely-connected non-Smirnov type domains

    Ufimsk. Mat. Zh., 9:1 (2017),  3–17
  23. Becker type univalence conditions for harmonic mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11,  80–85
  24. Rellich type inequalities in domains of the Euclidean space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 1,  69–73
  25. Sharp constants in Hardy type inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 10,  61–65
  26. Hardy type $L_p$-inequalities in $r$-close-to-convex domains

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 1,  84–88
  27. Integral inequalities in domains of hyperbolic type and their applications

    Mat. Sb., 206:12 (2015),  3–28
  28. A geometric description of domains whose Hardy constant is equal to 1/4

    Izv. RAN. Ser. Mat., 78:5 (2014),  3–26
  29. Brunn–Minkowski type inequalities for conformal and Euclidean moments of domains

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5,  64–67
  30. Sharp estimates of Hardy constants for domains with special boundary properties

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 2,  69–73
  31. Hardy-type inequalities in arbitrary domains with finite inner radius

    Sibirsk. Mat. Zh., 55:2 (2014),  239–250
  32. Families of domains with best possible Hardy constant

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 9,  59–63
  33. Estimates of Hardy's constants for tubular extensions of sets and domains with finite boundary moments

    Mat. Tr., 16:2 (2013),  3–12
  34. Isoperimetric inequality for torsional rigidity in multidimensional domains

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 7,  45–49
  35. Sharp estimates for functions with a pole and a logarithmic singularity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 12,  71–75
  36. Hardy-type inequalities with power and logarithmic weights in domains of the Euclidean space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9,  90–94
  37. The probability of a successful allocation of ball groups by boxes

    Lobachevskii J. Math., 25 (2007),  3–7
  38. Hardy type inequalities in higher dimensions with explicit estimate of constants

    Lobachevskii J. Math., 21 (2006),  3–31
  39. Hardy-Type Inequalities on Planar and Spatial Open Sets

    Trudy Mat. Inst. Steklova, 255 (2006),  8–18
  40. Concave schlicht functions with bounded opening angle at infinity

    Lobachevskii J. Math., 17 (2005),  3–10
  41. New isoperimetric inequalities for moments of domains and torsional rigidity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 7,  3–11
  42. On the coefficient multipliers theorem of Hardy and Littlewood

    Lobachevskii J. Math., 11 (2002),  7–12
  43. New Equations of Convolution Type Obtained by Replacing the Integral by Its Maximum

    Mat. Zametki, 71:1 (2002),  18–26
  44. Bilateral isoperimetric inequalities for boundary moments of plane domains

    Lobachevskii J. Math., 9 (2001),  3–5
  45. Solution of the generalized Saint Venant problem

    Mat. Sb., 189:12 (1998),  3–12
  46. Classes of univalent and multivalent Christoffel-Schwarz integrals and their applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 3,  64–67
  47. Estimates in the Bloch class and their generalizations

    Dokl. Akad. Nauk, 349:5 (1996),  583–585
  48. Conformal mappings that satisfy the boundary condition of the equality of metrics

    Dokl. Akad. Nauk, 347:3 (1996),  295–297
  49. Sharp estimates for the solution of a variational inverse boundary value problem in a countably connected domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 3,  3–13
  50. An analytic method for constructing hydrofoil designs from a given cavitation diagram

    Dokl. Akad. Nauk, 343:2 (1995),  195–197
  51. Zeros of coefficients of transformations and conditions for the solvability of inverse boundary value problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 8,  3–10
  52. A criterion for the solvability of the problem of constructing wing profiles based on a cavitation diagram

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 7,  3–12
  53. Generalizations of a theorem of Beurling and their applications to inverse boundary value problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 5,  80–83
  54. The Minkowski functional over ranges of values of the logarithm of the derivative, and univalence conditions

    Trudy Sem. Kraev. Zadacham, 27 (1992),  3–21
  55. Conditions for the univalence of the solution in problems of constructing wing profiles

    Trudy Sem. Kraev. Zadacham, 26 (1991),  3–19
  56. Metrics with variable density, and inverse boundary value problems

    Trudy Sem. Kraev. Zadacham, 25 (1990),  3–23
  57. Conditions for the univalence of solutions of applied inverse boundary value problems. II

    Trudy Sem. Kraev. Zadacham, 24 (1990),  14–38
  58. Univalent solutions of inverse boundary value problems in hydro-aerodynamics

    Trudy Sem. Kraev. Zadacham, 24 (1990),  3–14
  59. Estimates in the Zygmund class and their application to boundary value problems

    Dokl. Akad. Nauk SSSR, 307:6 (1989),  1289–1292
  60. Admissible functionals in injectivity conditions for differentiable mappings of $n$-dimensional domains

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 4,  3–12
  61. Injectivity in the domain of open isolated mappings with given boundary properties

    Dokl. Akad. Nauk SSSR, 292:4 (1987),  780–783
  62. Sufficient conditions for the finite-valence of analytic functions, and their applications

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 25 (1987),  3–121
  63. Conditions for the univalence of solutions of applied inverse boundary value problems. I

    Trudy Sem. Kraev. Zadacham, 23 (1987),  6–24
  64. Achievements and problems in sufficient conditions for finite-valence of analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 10,  3–16
  65. Construction of a Riemann surface from its boundary

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 5,  3–11
  66. Necessary conditions for the existence of a Riemann surface with a given boundary

    Trudy Sem. Kraev. Zadacham, 22 (1985),  6–15
  67. An inverse boundary value problem for a function with singularities

    Trudy Sem. Kraev. Zadacham, 21 (1984),  5–19
  68. Some geometric inequalities and sufficient conditions for $p$-valence

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 10,  3–12
  69. Method of locally homeomorphic extension in the theory of sufficient conditions for univalence

    Trudy Sem. Kraev. Zadacham, 20 (1983),  3–10
  70. Univalence of mappings with given properties

    Trudy Sem. Kraev. Zadacham, 19 (1983),  3–14
  71. Univalent solvability of the inverse problem of blast theory

    Trudy Sem. Kraev. Zadacham, 13 (1976),  24–29
  72. Singular cases of the principle of correspondence of boundaries

    Trudy Sem. Kraev. Zadacham, 13 (1976),  13–23
  73. Sufficient conditions for the univalence of quasiconformal mappings

    Mat. Zametki, 18:6 (1975),  793–802
  74. The main results on sufficient cjnditions for an analytic function to be schlicht

    Uspekhi Mat. Nauk, 30:4(184) (1975),  3–60
  75. Functions of the Bazilevic class in the disc and in an annulus

    Dokl. Akad. Nauk SSSR, 214:2 (1974),  241–244
  76. Some univalent mappings of the half-plane

    Trudy Sem. Kraev. Zadacham, 11 (1974),  3–8
  77. Sufficient conditions for univalence in nonconvex domains

    Sibirsk. Mat. Zh., 15:5 (1974),  963–971
  78. The subordination principle in sufficient conditions for univalence

    Dokl. Akad. Nauk SSSR, 211:1 (1973),  19–22
  79. On the weak and the strong problem of univalence in inverse boundary value problems

    Trudy Sem. Kraev. Zadacham, 10 (1973),  3–10
  80. Some sufficient conditions for the univalence of analytic functions

    Trudy Sem. Kraev. Zadacham, 9 (1972),  3–11
  81. Sufficient conditions for univalence of analytic functions

    Dokl. Akad. Nauk SSSR, 198:4 (1971),  743–746
  82. Some sufficient conditions for the univalence of the solutions to applied inverse boundary value problems

    Trudy Sem. Kraev. Zadacham, 8 (1971),  3–11
  83. On sufficient conditions for the univalence of the solutions of inverse boundary value problems

    Dokl. Akad. Nauk SSSR, 190:3 (1970),  495–498
  84. Conditions for the univalence of analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 11,  3–13
  85. A certain class of univalent functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 10,  12–20
  86. Application of the Schwarzian derivative for the study of the univalent solvability of inverse boundary value problems

    Trudy Sem. Kraev. Zadacham, 7 (1970),  78–80
  87. Radii of convexity and close-to-convexity of certain integral representations

    Mat. Zametki, 7:5 (1970),  581–592
  88. An application of close-to-convex functions to inverse boundary value problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 6,  3–10

  89. Leonid Aleksandrovich Aksent'ev

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  98–100
  90. Vladimir Mikhailovich Miklyukov (obituary)

    Uspekhi Mat. Nauk, 69:3(417) (2014),  173–176


© Steklov Math. Inst. of RAS, 2024