RUS  ENG
Full version
PEOPLE

Igoshin Valerii Ivanovich

Publications in Math-Net.Ru

  1. On points and vectors in geometry

    Math. Ed., 2017, no. 2(82),  27–43
  2. A pulsed hydrogen fluoride amplifier initiated by vibrational excitation of HF molecules by laser radiation

    Kvantovaya Elektronika, 34:3 (2004),  203–205
  3. Influence of oxygen on the energy characteristics of a chemical pulsed hydrogen fluoride laser

    Kvantovaya Elektronika, 34:2 (2004),  103–105
  4. An H2 – F2 amplifier initiated by IR laser radiation in an inhomogeneous working mixture

    Kvantovaya Elektronika, 32:10 (2002),  933–935
  5. On the possibility of obtaining high energy parameters from an IR-initiated thermal-chain explosion H2 – F2 laser

    Kvantovaya Elektronika, 31:2 (2001),  135–138
  6. Ultrahigh energy gain in small volumes of the active medium in a laser based on an autowave photon-branched chain reaction

    Kvantovaya Elektronika, 30:12 (2000),  1049–1054
  7. Chemical hydrogen fluoride laser on a thermal chain explosion initiated by resonance IR radiation

    Kvantovaya Elektronika, 30:7 (2000),  580–582
  8. Spectral and energy characteristics of a pulsed hydrogen fluoride laser and rotational relaxation of HF molecules

    Kvantovaya Elektronika, 29:1 (1999),  21–23
  9. Diffractive focusing of an input pulse and giant energy gain in a laser based on an auto-wave photon-branched network

    Kvantovaya Elektronika, 26:1 (1999),  37–42
  10. Lifetime of a two-phase active medium of a pulsed chemical HF laser

    Kvantovaya Elektronika, 25:10 (1998),  911–916
  11. Vibrational excitation of HF molecules and initiation of an H2 — F2 laser by multiline radiation from a hydrogen fluoride laser

    Kvantovaya Elektronika, 25:5 (1998),  401–404
  12. Formation and experimental investigation of a gaseous disperse medium of a pulsed chemical H2 — F2 laser initiated by IR radiation

    Kvantovaya Elektronika, 24:11 (1997),  983–986
  13. High-power laser amplifier based on an auto-wave photon-branched chain reaction in an unstable telescopic cavity

    Kvantovaya Elektronika, 24:6 (1997),  501–505
  14. Generation of the fundamental tone and first overtone radiations in a pulsed H2 — F2 laser

    Kvantovaya Elektronika, 24:5 (1997),  477–479
  15. Degradation of the disperse component of the active medium of a pulsed chemical HF laser

    Kvantovaya Elektronika, 24:3 (1997),  227–239
  16. New dynamic photon branching regimes in chemical HF lasers with a two-phase active medium

    Kvantovaya Elektronika, 23:4 (1996),  326–330
  17. Multipass optical reactor for laser processing of disperse materials

    Kvantovaya Elektronika, 22:7 (1995),  711–716
  18. Feasibiliy of improvement of the spatial spectrum of radiation from a cw chemical HF laser

    Kvantovaya Elektronika, 22:4 (1995),  365–366
  19. Calculation of the electron energy in the discharge plasma of a pulsed electron-beam-controlled CO laser on the basis of an analysis of the temporal characteristics of its radiation

    Kvantovaya Elektronika, 21:5 (1994),  429–432
  20. Multilevel model of a pulsed chemical H2 – F2 laser and its promising operational modes

    Kvantovaya Elektronika, 21:5 (1994),  417–421
  21. Pumping a KrF excimer laser by a laser discharge induced by an IR laser beam

    Kvantovaya Elektronika, 20:1 (1993),  39–44
  22. Theoretical simulation of lasers utilizing vibrational-rotational transitions in diatomic molecules allowing for anharmonicity and rotational nonequilibrium

    Kvantovaya Elektronika, 19:4 (1992),  372–376
  23. Generation of electromagnetic fields during emission of electrons into an ambient gas and plasma from the surfaces of laser-irradiated disperse particles

    Kvantovaya Elektronika, 18:4 (1991),  473–478
  24. Feasibility of initiation of pulsed chemical lasers by an optical discharge

    Kvantovaya Elektronika, 17:11 (1990),  1465–1466
  25. Calculations of the energy efficiency of resonators in an oxygen–iodine chemical laser

    Kvantovaya Elektronika, 16:9 (1989),  1819–1822
  26. Oxygen–iodine chemical laser with a longitudinally circulating active medium

    Kvantovaya Elektronika, 16:9 (1989),  1770–1774
  27. Calculation of the characteristics of a hardened layer using a model of laser steel hardening

    Kvantovaya Elektronika, 16:8 (1989),  1636–1642
  28. Control of the duration of optical pulses from an oxygen–iodine chemical laser

    Kvantovaya Elektronika, 16:4 (1989),  722–727
  29. Substantiation of the feasibility of developing a purely chemical $H_2-F_2$ laser with evaporation of finely dispersed particles under the action of infrared radiation

    Kvantovaya Elektronika, 16:3 (1989),  437–441
  30. Efficient solutions for low-temperature singlet-oxygen generators

    Kvantovaya Elektronika, 16:2 (1989),  229–234
  31. Influence of SF6 on the energy characteristics of an H2–F2 chemical laser

    Kvantovaya Elektronika, 16:1 (1989),  50–52
  32. Analysis of the growth of austenite grains in carbon steels during laser hardening

    Kvantovaya Elektronika, 15:10 (1988),  2119–2127
  33. Relaxation of the energy stored in an oxygen–iodine active medium containing bound iodine

    Kvantovaya Elektronika, 15:10 (1988),  2078–2086
  34. Influence of heat release in singlet oxygen on the operation of an oxygen–iodine chemical laser

    Kvantovaya Elektronika, 15:3 (1988),  471–476
  35. Theoretical analysis of the kinetics of a laser utilizing a mixture of O2(1Δ) and an iodine aerosol

    Kvantovaya Elektronika, 15:1 (1988),  70–77
  36. Characteristics of structural phase transformations in high-alloy steels subjected to laser heat treatment

    Kvantovaya Elektronika, 14:12 (1987),  2543–2549
  37. Water vapor content in the active medium of an oxygen–iodine chemical laser

    Kvantovaya Elektronika, 14:3 (1987),  516–523
  38. Active medium utilizing a mixture of O2(1Δ) and an iodine aerosol

    Kvantovaya Elektronika, 14:3 (1987),  509–515
  39. Principle of the shift of the temperature of the instrumental onset of the austenite transformation in steels during high-speed and laser heating

    Kvantovaya Elektronika, 13:11 (1986),  2315–2319
  40. Active medium of a chemical oxygen-iodine laser

    Kvantovaya Elektronika, 13:4 (1986),  787–796
  41. Efficiency of laser heating of particles dispersed in a gas stream

    Kvantovaya Elektronika, 12:10 (1985),  2187–2189
  42. Laser evaporation of metals in a gaseous atmosphere

    Kvantovaya Elektronika, 11:8 (1984),  1555–1561
  43. Kinetics of saturation of the active medium of an oxygen-iodine laser

    Kvantovaya Elektronika, 11:7 (1984),  1379–1389
  44. Influence of translational and hyperfine relaxation on the energy characteristics of an oxygen-iodine laser

    Kvantovaya Elektronika, 11:2 (1984),  382–385
  45. Advantages of pulsed operation of a chemical oxygen-iodine laser

    Kvantovaya Elektronika, 11:1 (1984),  201–203
  46. Chemical HF laser initiated by evaporation of fine particles under the action of infrared radiation

    Kvantovaya Elektronika, 10:9 (1983),  1922–1924
  47. Possibility of using an atomizer in a chemical generator of singlet oxygen for an oxygen–iodine laser

    Kvantovaya Elektronika, 10:4 (1983),  797–802
  48. Kinetic gasdynamic model and calculation of the characteristics of an H2–HF gasdynamic laser utilizing purely rotational transitions

    Kvantovaya Elektronika, 10:4 (1983),  748–755
  49. Chemical laser amplifier using a photon-branched reaction in an aerosol medium

    Kvantovaya Elektronika, 10:2 (1983),  458–461
  50. Formation of free fluorine atoms by laser-collisional initiation of the CH3F+F2 reaction

    Kvantovaya Elektronika, 10:2 (1983),  370–376
  51. Possibility of operation of a chemical oxygen–iodine laser without a cooled trap

    Kvantovaya Elektronika, 10:1 (1983),  131–132
  52. Numerical modeling of a chemical oxygen–iodine laser

    Kvantovaya Elektronika, 9:9 (1982),  1899–1901
  53. Thermal gasdynamic laser utilizing rotational transitions in hydrogen halides with energy transfer from H2 molecules

    Kvantovaya Elektronika, 9:6 (1982),  1283–1287
  54. Analysis of the energetics of a chemical oxygen–iodine laser

    Kvantovaya Elektronika, 9:6 (1982),  1193–1198
  55. Analysis of the energetics of chain-reaction chemical lasers allowing for rotational nonequilibrium

    Kvantovaya Elektronika, 8:5 (1981),  941–953
  56. Numerical analysis of a DF–CO2 chemical laser: kinetics of processes and comparison between calculations and experiment

    Kvantovaya Elektronika, 8:2 (1981),  277–286
  57. Photon branching in chain reactions and in chemical lasers initiated by infrared radiation

    Kvantovaya Elektronika, 6:12 (1979),  2517–2524
  58. Numerical analysis of an HF–HCl chemical laser utilizing the ClF+H2 chain reaction

    Kvantovaya Elektronika, 6:3 (1979),  528–538
  59. Halogen hydride lasers with vibrational energy transfer from metastable diatomic molecules

    Kvantovaya Elektronika, 5:5 (1978),  1048–1056
  60. Possibility of generation of short laser radiation pulses as a result of photolysis of a cooled H2–F2 mixture

    Kvantovaya Elektronika, 5:4 (1978),  907–909
  61. Influence of the main factors on the efficiency of coherent emission as a result of reaction of hydrogen with fluorine

    Kvantovaya Elektronika, 4:6 (1977),  1282–1295
  62. An investigation of a chemical laser emitting due to an overtone of the HF molecule

    Kvantovaya Elektronika, 4:5 (1977),  1112–1114
  63. Chemical DF–CO2 amplifier of short light pulses

    Kvantovaya Elektronika, 4:5 (1977),  1004–1008
  64. Electron-beam initiation of a hydrogen fluoride chemical laser

    Kvantovaya Elektronika, 3:9 (1976),  2072–2074
  65. Amplification of the fundamental frequency and harmonics by chemical reaction

    Kvantovaya Elektronika, 3:9 (1976),  1967–1979
  66. Analytic and numerical solutions of rate equations for multilevel chemical and molecular lasers in quasisteady approximation. I. Analytic treatment

    Kvantovaya Elektronika, 2:8 (1975),  1638–1647
  67. Determination of the rate constant of the chemical reaction F + H2(D2) → HF(DF) + H(D) from the stimulated emission of the HF(DF) molecules

    Kvantovaya Elektronika, 1973, no. 4(16),  50–59
  68. Dynamics of chemical lasers (review)

    Kvantovaya Elektronika, 1971, no. 2,  3–24


© Steklov Math. Inst. of RAS, 2024