A multidimensional analologue of ciclides of Dupin was considers: double canal hypersurfaces. A generalization were proved of the theorems about the set of centres $C_1$ and $C_2$ of the generating hyperspheres.
Main publications:
K geometrii tsentralnoi proektsii n-poverkhnostei v evklidovom prostranstve $E^n$ // Izv. VUZov, matem., 1998, # 6, s. 96–96.
Dvazhdy kanalovye giperpoverkhnosti v evklidovom prostranstve $E^n$ // Matem. sb., 2000, t. 191, # 6, s. 155–160.
K geometrii pary ortogonalnykh $n$-poverkhnostei v $E^2n$ // SMZh, 1995, t. 36, # 1, s. 228–232.
K geometrii pary ortogonalnykh $n$-poverkhnostei v $E^{2n}$ // SMZh, 1995, t. 36, # 1, s. 228–232.
Preobrazovanie Bianki $n$-poverkhnostei v $E^{2n-1}$ // Izv. VUZov, matem., 1997, # 9, s. 71–74.