RUS  ENG
Full version
PEOPLE
Dubinin Vladimir Nikolaevich
Dubinin Vladimir Nikolaevich
Corresponding member of RAS
Professor
Doctor of physico-mathematical sciences (1989)

Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 2.06.1951
Phone: +7 (4232) 348653
Fax: +7 (4232) 311856
E-mail: ,
Keywords: Polynomials, rational functions, analytic functions, univalent functions, conformal mappings, covering theorems, distortion theorems, extremal decomposition, Schwarz's lemma, Lindelof principle, conformal invariants, capacities of sets and condensers, reduced moduli, harmonic measure, extremal length of family of curves, polarization, symmetrization, dissymmetrization, rearrangements, inequalities.
UDC: 517, 517.5, 517.53, 517.54, 517.57, 517.518.86, 517.956.224, 512.62, 517.956, 517.958, 517.547, 517.546
MSC: 30C10, 30C15, 30C25, 30C35, 30C55, 30C75, 30C80, 30C85, 31A15, 31B15, 31B35, 35L20, 35R30, 35Q99, 30D30, 30C45

Subject:

Geometric function theory, potential theory, isoperimetric inequalities in mathematical physics.
General symmetrization principles for various symmetrization-like transformation of condensers in n-space have been established for a wide range of capacities induced by functionals dependent on the argument, the function and its first partial derivatives. Generalized condensers having three and more plates on the Riemann sphere have been first introduced and studied. Common properties of these condensers and asymptotic formulas for their capacities under degeneration of some plates have been found. General approach to application of conformal capacity of condensers and their symmetrization in geometric theory of functions of a complex variable has been developed. In particular, new metric properties of plane sets have been found, extremal decomposition theorems with free poles and new covering and distortion theorems for univalent and multivalent functions proved. New properties of polynomials and rational functions have been established using geometric function theory methods. In particular, new Bernstein-type inequalities and some inequalities for zeros, critical points and critical values of polynomials have been proved.


Main publications:
  1. V. N. Dubinin, “On the change in harmonic measure under symmetrization”, Math. USSR-Sb., 52:1 (1985), 267–273  mathnet  crossref  mathscinet  zmath  isi
  2. V. N. Dubinin, “Capacities and geometric transformations of subsets in n-space”, Geometric and Functional Analysis, 3:4 (1993), 342-369  crossref  mathscinet  zmath  scopus
  3. V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus
  4. V. N. Dubinin, “Conformal mappings and inequalities for algebraic polynomials”, St. Petersburg Math. J., 13:5 (2002), 717–737  mathnet  mathscinet  zmath
  5. V. N. Dubinin, “Inequalities for critical values of polynomials”, Sb. Math., 197:8 (2006), 1167–1176  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
  6. V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
  7. V. N. Dubinin, “On one extremal problem for complex polynomials with constraints on critical values”, Siberian Math. J., 55:1 (2014), 63–71  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
  8. V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Basel: Birkhauser / Springer, 2014 , xii+344 pp.  mathscinet  zmath  scopus
  9. V. N. Dubinin, “Circular symmetrization of condensers on Riemann surfaces”, Sb. Math., 206:1 (2015), 61–86  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
  10. V. N. Dubinin, “Geometric estimates for the Schwarzian derivative”, Russian Math. Surveys, 72:3 (2017), 479–511  mathnet  crossref  crossref  mathscinet  zmath  zmath  adsnasa  isi  elib  elib  scopus

Recent publications

Presentations in Math-Net.Ru

Personal pages:

Organisations:


© Steklov Math. Inst. of RAS, 2024