RUS  ENG
Full version
PEOPLE

Stepanets Alexander Ivanovich

Publications in Math-Net.Ru

  1. Extremal problems for integrals of non-negative functions

    Izv. RAN. Ser. Mat., 74:3 (2010),  169–224
  2. Extremal Problems for Numerical Series

    Mat. Zametki, 82:5 (2007),  736–755
  3. Solution of the Kolmogorov–Nikol'skii problem for the Poisson integrals of continuous functions

    Mat. Sb., 192:1 (2001),  113–138
  4. Approximation by Fourier operators of functions that are defined on the real axis

    Dokl. Akad. Nauk SSSR, 303:1 (1988),  50–53
  5. Strong summability of Fourier series on classes of $(\psi,\beta)$-differentiable functions

    Mat. Zametki, 44:4 (1988),  506–516
  6. Approximations on classes of $(\psi,\beta)$-differentiable functions

    Dokl. Akad. Nauk SSSR, 293:4 (1987),  797–800
  7. Best approximations of infinitely differentiable functions in the space $L_s$

    Mat. Zametki, 42:1 (1987),  21–32
  8. Approximation of periodic functions by Fourier sums

    Trudy Mat. Inst. Steklov., 180 (1987),  202–204
  9. Classification of periodic functions and the rate of convergence of their Fourier series

    Izv. Akad. Nauk SSSR Ser. Mat., 50:1 (1986),  101–136
  10. Classes of periodic functions and the approximation of their elements by Fourier sums

    Dokl. Akad. Nauk SSSR, 277:5 (1984),  1074–1077
  11. Simultaneous approximation of periodic functions and their derivatives

    Mat. Zametki, 36:6 (1984),  873–882
  12. Simultaneous approximation of a pair of conjugate functions

    Mat. Zametki, 34:5 (1983),  641–650
  13. Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables

    Izv. Akad. Nauk SSSR Ser. Mat., 46:3 (1982),  650–665
  14. Sharp estimates of Fourier coefficients on classes of continuous and differentiable periodic functions of several variables

    Dokl. Akad. Nauk SSSR, 261:1 (1981),  34–38
  15. Simultaneous approximation of periodic functions and their derivatives by Fourier sums

    Dokl. Akad. Nauk SSSR, 254:3 (1980),  543–544
  16. Estimates of the deviations of partial Fourier sums on classes of continuous periodic functions of several variables

    Izv. Akad. Nauk SSSR Ser. Mat., 44:5 (1980),  1150–1190
  17. Approximation of Fourier sums on classes of periodic functions that are defined by polyharmonic operators

    Mat. Zametki, 27:4 (1980),  569–581
  18. Approximation by Riesz sums of periodic functions of Hölder classes

    Mat. Zametki, 21:3 (1977),  341–354
  19. Approximation of continuous periodic functions of many variables by spherical Riesz means

    Mat. Zametki, 15:5 (1974),  821–832
  20. The approximation of continuous periodic functions of two variables by Faward sums

    Mat. Zametki, 13:5 (1973),  655–666
  21. Deviation of partial sums of Fourier series in Hölder classes of functions of two variables

    Dokl. Akad. Nauk SSSR, 206:3 (1972),  549–551


© Steklov Math. Inst. of RAS, 2024