|
|
Publications in Math-Net.Ru
-
Поправка к статье “Математические структуры, связанные с описанием квантовых состояний”, 2021, том 501, с. 57–61
Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 106
-
Erratum to: Several Articles in Doklady Mathematics
Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 402–403
-
Markov approximations of the evolution of quantum systems
Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022), 48–53
-
Mathematical structures related to the description of quantum states
Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 57–61
-
Random quantization of Hamiltonian systems
Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 31–36
-
Lebesgue–Feynman measures on infinite dimensional spaces
Internat. J. Theoret. Phys., 60 (2021), 650–654
-
Wigner Measures and Coherent Quantum Control
Trudy Mat. Inst. Steklova, 313 (2021), 59–66
-
Schrödinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function
Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 65–69
-
Quantum Anomalies via Differential Properties of Lebesgue–Feynman Generalized Measures
Trudy Mat. Inst. Steklova, 310 (2020), 107–118
-
Stochastic processes on the group of orthogonal matrices and evolution equations describing them
Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020), 1741–1756
-
Randomizes hamiltonian mechanics
Dokl. Akad. Nauk, 486:6 (2019), 635–658
-
Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups
Trudy Mat. Inst. Steklova, 306 (2019), 210–226
-
Hamiltonian approach to secondary quantization
Dokl. Akad. Nauk, 483:2 (2018), 138–142
-
Two Theorems on Isomorphisms of Measure Spaces
Mat. Zametki, 104:5 (2018), 781–784
-
Feynman calculus for random operator-valued functions and their applications
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:2 (2018), 373–383
-
Unbounded random operators and Feynman formulae
Izv. RAN. Ser. Mat., 80:6 (2016), 141–172
-
Invariant and quasi-invariant measures on infinite-dimensional spaces
Dokl. Akad. Nauk, 465:5 (2015), 527–531
-
Feynman formulas as a method of averaging random Hamiltonians
Trudy Mat. Inst. Steklova, 285 (2014), 232–243
-
Hamiltonian aspects of quantum theory
Dokl. Akad. Nauk, 444:6 (2012), 607–611
-
Linear and nonlinear liftings of states of quantum systems
Russ. J. Math. Phys., 19:4 (2012), 417–427
-
Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian
TMF, 172:1 (2012), 122–137
-
The relativistic Poincaréм model
Dokl. Akad. Nauk, 428:2 (2009), 171–176
-
Generalized Wiener-Segal-Fock representations and Feynman formulae
Dokl. Akad. Nauk, 425:1 (2009), 15–19
-
Generalized Lévy Laplacians and Cesàro means
Dokl. Akad. Nauk, 424:5 (2009), 583–587
-
Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator
Trudy Mat. Inst. Steklova, 265 (2009), 229–240
-
Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 4, 16–22
-
Weak convergence of states in quantum statistical mechanics
Dokl. Akad. Nauk, 417:2 (2007), 180–184
-
Information entropy in problems of classical and quantum statistical mechanics
Dokl. Akad. Nauk, 411:5 (2006), 587–590
-
Exact master equations describing reduced dynamics of the Wigner function
Fundam. Prikl. Mat., 12:5 (2006), 203–219
-
Wigner function and diffusion in collisionfree media of quantum particles
Teor. Veroyatnost. i Primenen., 51:1 (2006), 109–125
-
Randomized Hamiltonian Feynman integrals and Shrödinger–Itô stochastic equations
Izv. RAN. Ser. Mat., 69:6 (2005), 3–20
-
Gateaux complex differentiability and continuity
Izv. RAN. Ser. Mat., 68:6 (2004), 157–168
-
Asymptotic Decoherence in Infinite-Dimensional Quantum Systems with Quadratic Hamiltonians
Mat. Zametki, 73:1 (2003), 143–148
-
Lévy–Laplace Operators in Functional Rigged Hilbert Spaces
Mat. Zametki, 72:1 (2002), 145–150
-
Structure of spectra of linear operators in Banach spaces
Mat. Sb., 192:4 (2001), 99–114
-
Feynman Formulas for Solutions of the Schrödinger Equation on Compact Riemannian Manifolds
Mat. Zametki, 68:5 (2000), 789–793
-
Bogolyubov transformations in Wiener–Segal–Fock space
Mat. Zametki, 68:3 (2000), 474–479
-
Schrödinger–Belavkin equations and associated Kolmogorov and Lindblad equations
TMF, 120:2 (1999), 193–207
-
Change of variable formulas for Feynman pseudomeasures
TMF, 119:3 (1999), 355–367
-
Extensions of spaces with cylindrical measures and supports of measures determined by the Lévy Laplacian
Mat. Zametki, 64:4 (1998), 483–492
-
Stochastic Schrödinger–Belavkin equation and the corresponding equations of Kolmogorov and Lindblad
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 4, 19–24
-
Logarithmic derivatives of measures, and Gibbs distributions
Dokl. Akad. Nauk, 354:4 (1997), 456–460
-
Infinite-dimensional stochastic Schrödinger–Belavkin equations
Uspekhi Mat. Nauk, 52:4(316) (1997), 197–198
-
Differentiable measures on current groups
Trudy Mat. Inst. Steklova, 217 (1997), 182–188
-
Transformations of Gaussian measures generated by the Lévy–Laplacian, and generalized traces
Dokl. Akad. Nauk, 350:1 (1996), 5–8
-
Models of the symmetric Fock algebra
Mat. Zametki, 60:6 (1996), 939–942
-
Change of variable formulas for infinite-dimensional distributions
Mat. Zametki, 60:2 (1996), 288–292
-
Formulae with logarithmic derivatives of measures related to the quantization of infinite-dimensional Hamiltonian systems
Uspekhi Mat. Nauk, 51:2(308) (1996), 149–150
-
Smooth measures on loop groups
Dokl. Akad. Nauk, 345:4 (1995), 455–458
-
A Gaussian process generated by the Lévy Laplacian, and the
corresponding Feynman–Kac formula
Dokl. Akad. Nauk, 342:4 (1995), 442–445
-
Smooth curves in spaces of measures, and shifts of differentiable
measures along vector fields
Dokl. Akad. Nauk, 339:5 (1994), 584–587
-
The Feynman integral and nonlinear transformations of a phase
space
Dokl. Akad. Nauk, 336:1 (1994), 29–32
-
Ordinary differential equations in locally convex spaces
Uspekhi Mat. Nauk, 49:3(297) (1994), 93–168
-
Transformations of Feynman integral under some nonlinear transformations of the phase space
TMF, 100:1 (1994), 3–13
-
The Holmgren theorem for stochastic differential equations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 1, 54–59
-
Some results on logarithmic derivatives of measures on a locally convex space
Mat. Zametki, 54:6 (1993), 135–138
-
Brownian motion generated by the Levy Laplacian
Mat. Zametki, 54:5 (1993), 144–148
-
The support of a symplectic Feynman measure and the uncertainty
principle
Dokl. Akad. Nauk, 323:6 (1992), 1038–1042
-
Shifts of Feynman measure along vector fields
Mat. Zametki, 52:3 (1992), 154–156
-
A Simple Proof of Tarieladze's Theorem on Sufficiency of Positively Sufficient Topologies
Teor. Veroyatnost. i Primenen., 37:2 (1992), 421–424
-
Analytic properties of infinite-dimensional distributions
Uspekhi Mat. Nauk, 45:3(273) (1990), 3–83
-
Representation of the solutions of second-order linear evolution
superdifferential equations by path integrals
Dokl. Akad. Nauk SSSR, 309:3 (1989), 545–550
-
The Fourier transform and pseudodifferential operators in
superanalysis
Dokl. Akad. Nauk SSSR, 299:4 (1988), 816–820
-
Algebra of infinite-dimensional pseudodifferential operators
Dokl. Akad. Nauk SSSR, 292:6 (1987), 1310–1314
-
de Rham currents and the Stokes formula in Hilbert space
Dokl. Akad. Nauk SSSR, 286:3 (1986), 554–558
-
The central limit theorem for generalized measures on
infinite-dimensional spaces
Dokl. Akad. Nauk SSSR, 281:2 (1985), 279–283
-
On the weak sequential completeness of the spaces of Radon measures
Teor. Veroyatnost. i Primenen., 29:1 (1984), 141–147
-
Topology of the spaces $D$ and $D'$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1, 66–68
-
The Gross–Sazonov theorem for sign-variable cylindrical measures
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 4, 4–12
-
Infinite-dimensional pseudodifferential operators and Schrödinger quantization
Dokl. Akad. Nauk SSSR, 263:3 (1982), 558–562
-
A method of proof of the uniqueness theorem for evolutionary differential equations
Mat. Zametki, 25:2 (1979), 259–269
-
Higher derivatives of mappings of locally convex spaces
Mat. Zametki, 22:5 (1977), 729–744
-
Measures on linear topological spaces
Uspekhi Mat. Nauk, 31:4(190) (1976), 3–56
-
Linear representations of evolution differential equations
Dokl. Akad. Nauk SSSR, 221:6 (1975), 1288–1291
-
Almost closed subsets of countable products of locally convex spaces
Tr. Mosk. Mat. Obs., 32 (1975), 61–76
-
The class of spaces in which the theorem on the bounded differentiability of the inverse mapping is valid
Mat. Zametki, 17:5 (1975), 703–709
-
The size of the classes of hypercomplete spaces and spaces that satisfy the
Kreĭn–Šmul'jan condition
Uspekhi Mat. Nauk, 30:1(181) (1975), 259–260
-
Certain complete spaces of smooth mappings of pseudotopological linear spaces
Uspekhi Mat. Nauk, 29:4(178) (1974), 181–182
-
Sequentially closed subsets of products of locally convex spaces
Funktsional. Anal. i Prilozhen., 7:1 (1973), 88–89
-
Every Hilbert subspace of a Wiener space has measure zero
Mat. Zametki, 14:3 (1973), 369–374
-
Linear differential operators in spaces of measures and functions on Hilbert space
Uspekhi Mat. Nauk, 28:5(173) (1973), 251–252
-
Generalized functions and differential equations in linear spaces. II. Differential operators and their Fourier transforms
Tr. Mosk. Mat. Obs., 27 (1972), 249–262
-
Several results on fully complete spaces and hereditarily complete spaces
Uspekhi Mat. Nauk, 27:2(164) (1972), 181–182
-
The space $D$ is not hereditarily complete
Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971), 682–696
-
Generalized functions and differential equations in linear spaces. I. Differentiable measures
Tr. Mosk. Mat. Obs., 24 (1971), 133–174
-
Measurable linear manifolds in products of linear spaces with measure
Mat. Zametki, 5:5 (1969), 623–634
-
Almost closed linear subspaces of strict inductive limits of sequences of Fréchet spaces
Mat. Sb. (N.S.), 80(122):4(12) (1969), 513–520
-
The various definitions of the derivative in linear topological spaces
Uspekhi Mat. Nauk, 23:4(142) (1968), 67–116
-
Differentiation in linear topological spaces
Dokl. Akad. Nauk SSSR, 173:4 (1967), 735–738
-
The theory of differentiation in linear topological spaces
Uspekhi Mat. Nauk, 22:6(138) (1967), 201–260
-
Measurable polylinear and power functionals in certain linear spaces with measure
Dokl. Akad. Nauk SSSR, 170:3 (1966), 526–529
-
Isomorphism of some functional measure spaces
Uspekhi Mat. Nauk, 21:3(129) (1966), 231–232
-
On linear topological spaces not satisfying the first axiom of countability
Uspekhi Mat. Nauk, 19:6(120) (1964), 199–200
-
Vladimir Igorevich Bogachev (on his 60th birthday)
Uspekhi Mat. Nauk, 76:6(462) (2021), 201–208
-
In memory of Sergei Vasil'evich Fomin
Uspekhi Mat. Nauk, 31:4(190) (1976), 199–212
-
An addendum to the article: “Different definitions of derivative in linear topological spaces”
Uspekhi Mat. Nauk, 23:5(143) (1968), 223–224
© , 2025