RUS  ENG
Full version
PEOPLE

Smolyanov Oleg Georgievich

Publications in Math-Net.Ru

  1. Поправка к статье “Математические структуры, связанные с описанием квантовых состояний”, 2021, том 501, с. 57–61

    Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023),  106
  2. Erratum to: Several Articles in Doklady Mathematics

    Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022),  402–403
  3. Markov approximations of the evolution of quantum systems

    Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022),  48–53
  4. Mathematical structures related to the description of quantum states

    Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021),  57–61
  5. Random quantization of Hamiltonian systems

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  31–36
  6. Lebesgue–Feynman measures on infinite dimensional spaces

    Internat. J. Theoret. Phys., 60 (2021),  650–654
  7. Wigner Measures and Coherent Quantum Control

    Trudy Mat. Inst. Steklova, 313 (2021),  59–66
  8. Schrödinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  65–69
  9. Quantum Anomalies via Differential Properties of Lebesgue–Feynman Generalized Measures

    Trudy Mat. Inst. Steklova, 310 (2020),  107–118
  10. Stochastic processes on the group of orthogonal matrices and evolution equations describing them

    Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020),  1741–1756
  11. Randomizes hamiltonian mechanics

    Dokl. Akad. Nauk, 486:6 (2019),  635–658
  12. Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups

    Trudy Mat. Inst. Steklova, 306 (2019),  210–226
  13. Hamiltonian approach to secondary quantization

    Dokl. Akad. Nauk, 483:2 (2018),  138–142
  14. Two Theorems on Isomorphisms of Measure Spaces

    Mat. Zametki, 104:5 (2018),  781–784
  15. Feynman calculus for random operator-valued functions and their applications

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:2 (2018),  373–383
  16. Unbounded random operators and Feynman formulae

    Izv. RAN. Ser. Mat., 80:6 (2016),  141–172
  17. Invariant and quasi-invariant measures on infinite-dimensional spaces

    Dokl. Akad. Nauk, 465:5 (2015),  527–531
  18. Feynman formulas as a method of averaging random Hamiltonians

    Trudy Mat. Inst. Steklova, 285 (2014),  232–243
  19. Hamiltonian aspects of quantum theory

    Dokl. Akad. Nauk, 444:6 (2012),  607–611
  20. Linear and nonlinear liftings of states of quantum systems

    Russ. J. Math. Phys., 19:4 (2012),  417–427
  21. Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian

    TMF, 172:1 (2012),  122–137
  22. The relativistic Poincaréм model

    Dokl. Akad. Nauk, 428:2 (2009),  171–176
  23. Generalized Wiener-Segal-Fock representations and Feynman formulae

    Dokl. Akad. Nauk, 425:1 (2009),  15–19
  24. Generalized Lévy Laplacians and Cesàro means

    Dokl. Akad. Nauk, 424:5 (2009),  583–587
  25. Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator

    Trudy Mat. Inst. Steklova, 265 (2009),  229–240
  26. Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 4,  16–22
  27. Weak convergence of states in quantum statistical mechanics

    Dokl. Akad. Nauk, 417:2 (2007),  180–184
  28. Information entropy in problems of classical and quantum statistical mechanics

    Dokl. Akad. Nauk, 411:5 (2006),  587–590
  29. Exact master equations describing reduced dynamics of the Wigner function

    Fundam. Prikl. Mat., 12:5 (2006),  203–219
  30. Wigner function and diffusion in collisionfree media of quantum particles

    Teor. Veroyatnost. i Primenen., 51:1 (2006),  109–125
  31. Randomized Hamiltonian Feynman integrals and Shrödinger–Itô stochastic equations

    Izv. RAN. Ser. Mat., 69:6 (2005),  3–20
  32. Gateaux complex differentiability and continuity

    Izv. RAN. Ser. Mat., 68:6 (2004),  157–168
  33. Asymptotic Decoherence in Infinite-Dimensional Quantum Systems with Quadratic Hamiltonians

    Mat. Zametki, 73:1 (2003),  143–148
  34. Lévy–Laplace Operators in Functional Rigged Hilbert Spaces

    Mat. Zametki, 72:1 (2002),  145–150
  35. Structure of spectra of linear operators in Banach spaces

    Mat. Sb., 192:4 (2001),  99–114
  36. Feynman Formulas for Solutions of the Schrödinger Equation on Compact Riemannian Manifolds

    Mat. Zametki, 68:5 (2000),  789–793
  37. Bogolyubov transformations in Wiener–Segal–Fock space

    Mat. Zametki, 68:3 (2000),  474–479
  38. Schrödinger–Belavkin equations and associated Kolmogorov and Lindblad equations

    TMF, 120:2 (1999),  193–207
  39. Change of variable formulas for Feynman pseudomeasures

    TMF, 119:3 (1999),  355–367
  40. Extensions of spaces with cylindrical measures and supports of measures determined by the Lévy Laplacian

    Mat. Zametki, 64:4 (1998),  483–492
  41. Stochastic Schrödinger–Belavkin equation and the corresponding equations of Kolmogorov and Lindblad

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 4,  19–24
  42. Logarithmic derivatives of measures, and Gibbs distributions

    Dokl. Akad. Nauk, 354:4 (1997),  456–460
  43. Infinite-dimensional stochastic Schrödinger–Belavkin equations

    Uspekhi Mat. Nauk, 52:4(316) (1997),  197–198
  44. Differentiable measures on current groups

    Trudy Mat. Inst. Steklova, 217 (1997),  182–188
  45. Transformations of Gaussian measures generated by the Lévy–Laplacian, and generalized traces

    Dokl. Akad. Nauk, 350:1 (1996),  5–8
  46. Models of the symmetric Fock algebra

    Mat. Zametki, 60:6 (1996),  939–942
  47. Change of variable formulas for infinite-dimensional distributions

    Mat. Zametki, 60:2 (1996),  288–292
  48. Formulae with logarithmic derivatives of measures related to the quantization of infinite-dimensional Hamiltonian systems

    Uspekhi Mat. Nauk, 51:2(308) (1996),  149–150
  49. Smooth measures on loop groups

    Dokl. Akad. Nauk, 345:4 (1995),  455–458
  50. A Gaussian process generated by the Lévy Laplacian, and the corresponding Feynman–Kac formula

    Dokl. Akad. Nauk, 342:4 (1995),  442–445
  51. Smooth curves in spaces of measures, and shifts of differentiable measures along vector fields

    Dokl. Akad. Nauk, 339:5 (1994),  584–587
  52. The Feynman integral and nonlinear transformations of a phase space

    Dokl. Akad. Nauk, 336:1 (1994),  29–32
  53. Ordinary differential equations in locally convex spaces

    Uspekhi Mat. Nauk, 49:3(297) (1994),  93–168
  54. Transformations of Feynman integral under some nonlinear transformations of the phase space

    TMF, 100:1 (1994),  3–13
  55. The Holmgren theorem for stochastic differential equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 1,  54–59
  56. Some results on logarithmic derivatives of measures on a locally convex space

    Mat. Zametki, 54:6 (1993),  135–138
  57. Brownian motion generated by the Levy Laplacian

    Mat. Zametki, 54:5 (1993),  144–148
  58. The support of a symplectic Feynman measure and the uncertainty principle

    Dokl. Akad. Nauk, 323:6 (1992),  1038–1042
  59. Shifts of Feynman measure along vector fields

    Mat. Zametki, 52:3 (1992),  154–156
  60. A Simple Proof of Tarieladze's Theorem on Sufficiency of Positively Sufficient Topologies

    Teor. Veroyatnost. i Primenen., 37:2 (1992),  421–424
  61. Analytic properties of infinite-dimensional distributions

    Uspekhi Mat. Nauk, 45:3(273) (1990),  3–83
  62. Representation of the solutions of second-order linear evolution superdifferential equations by path integrals

    Dokl. Akad. Nauk SSSR, 309:3 (1989),  545–550
  63. The Fourier transform and pseudodifferential operators in superanalysis

    Dokl. Akad. Nauk SSSR, 299:4 (1988),  816–820
  64. Algebra of infinite-dimensional pseudodifferential operators

    Dokl. Akad. Nauk SSSR, 292:6 (1987),  1310–1314
  65. de Rham currents and the Stokes formula in Hilbert space

    Dokl. Akad. Nauk SSSR, 286:3 (1986),  554–558
  66. The central limit theorem for generalized measures on infinite-dimensional spaces

    Dokl. Akad. Nauk SSSR, 281:2 (1985),  279–283
  67. On the weak sequential completeness of the spaces of Radon measures

    Teor. Veroyatnost. i Primenen., 29:1 (1984),  141–147
  68. Topology of the spaces $D$ and $D'$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1,  66–68
  69. The Gross–Sazonov theorem for sign-variable cylindrical measures

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 4,  4–12
  70. Infinite-dimensional pseudodifferential operators and Schrödinger quantization

    Dokl. Akad. Nauk SSSR, 263:3 (1982),  558–562
  71. A method of proof of the uniqueness theorem for evolutionary differential equations

    Mat. Zametki, 25:2 (1979),  259–269
  72. Higher derivatives of mappings of locally convex spaces

    Mat. Zametki, 22:5 (1977),  729–744
  73. Measures on linear topological spaces

    Uspekhi Mat. Nauk, 31:4(190) (1976),  3–56
  74. Linear representations of evolution differential equations

    Dokl. Akad. Nauk SSSR, 221:6 (1975),  1288–1291
  75. Almost closed subsets of countable products of locally convex spaces

    Tr. Mosk. Mat. Obs., 32 (1975),  61–76
  76. The class of spaces in which the theorem on the bounded differentiability of the inverse mapping is valid

    Mat. Zametki, 17:5 (1975),  703–709
  77. The size of the classes of hypercomplete spaces and spaces that satisfy the Kreĭn–Šmul'jan condition

    Uspekhi Mat. Nauk, 30:1(181) (1975),  259–260
  78. Certain complete spaces of smooth mappings of pseudotopological linear spaces

    Uspekhi Mat. Nauk, 29:4(178) (1974),  181–182
  79. Sequentially closed subsets of products of locally convex spaces

    Funktsional. Anal. i Prilozhen., 7:1 (1973),  88–89
  80. Every Hilbert subspace of a Wiener space has measure zero

    Mat. Zametki, 14:3 (1973),  369–374
  81. Linear differential operators in spaces of measures and functions on Hilbert space

    Uspekhi Mat. Nauk, 28:5(173) (1973),  251–252
  82. Generalized functions and differential equations in linear spaces. II. Differential operators and their Fourier transforms

    Tr. Mosk. Mat. Obs., 27 (1972),  249–262
  83. Several results on fully complete spaces and hereditarily complete spaces

    Uspekhi Mat. Nauk, 27:2(164) (1972),  181–182
  84. The space $D$ is not hereditarily complete

    Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971),  682–696
  85. Generalized functions and differential equations in linear spaces. I. Differentiable measures

    Tr. Mosk. Mat. Obs., 24 (1971),  133–174
  86. Measurable linear manifolds in products of linear spaces with measure

    Mat. Zametki, 5:5 (1969),  623–634
  87. Almost closed linear subspaces of strict inductive limits of sequences of Fréchet spaces

    Mat. Sb. (N.S.), 80(122):4(12) (1969),  513–520
  88. The various definitions of the derivative in linear topological spaces

    Uspekhi Mat. Nauk, 23:4(142) (1968),  67–116
  89. Differentiation in linear topological spaces

    Dokl. Akad. Nauk SSSR, 173:4 (1967),  735–738
  90. The theory of differentiation in linear topological spaces

    Uspekhi Mat. Nauk, 22:6(138) (1967),  201–260
  91. Measurable polylinear and power functionals in certain linear spaces with measure

    Dokl. Akad. Nauk SSSR, 170:3 (1966),  526–529
  92. Isomorphism of some functional measure spaces

    Uspekhi Mat. Nauk, 21:3(129) (1966),  231–232
  93. On linear topological spaces not satisfying the first axiom of countability

    Uspekhi Mat. Nauk, 19:6(120) (1964),  199–200

  94. Vladimir Igorevich Bogachev (on his 60th birthday)

    Uspekhi Mat. Nauk, 76:6(462) (2021),  201–208
  95. In memory of Sergei Vasil'evich Fomin

    Uspekhi Mat. Nauk, 31:4(190) (1976),  199–212
  96. An addendum to the article: “Different definitions of derivative in linear topological spaces”

    Uspekhi Mat. Nauk, 23:5(143) (1968),  223–224


© Steklov Math. Inst. of RAS, 2025