RUS  ENG
Full version
PEOPLE

Fominykh Aleksandr Vladimirovich

Publications in Math-Net.Ru

  1. Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:1 (2023),  120–134
  2. Method for finding a solution to a linear nonstationary interval ODE system

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:2 (2021),  148–165
  3. The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:1 (2021),  47–58
  4. Gradient method for solving some types of differential inclusions

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  256–273
  5. Open-loop control of a plant described by a system with nonsmooth right-hand side

    Zh. Vychisl. Mat. Mat. Fiz., 59:10 (2019),  1695–1705
  6. A method for solving differential inclusions with fixed right end

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:4 (2018),  302–315
  7. Methods of subdifferential and hypodifferential descent in the problem of constructing an integrally constrained program control

    Avtomat. i Telemekh., 2017, no. 4,  37–48
  8. The hypodifferential descent method in the problem of constructing an optimal control

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2016, no. 3,  106–125
  9. Hypodifferential descent method in the problem of constructing program control

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2016, no. 1,  117–124
  10. Exact penalties in a problem of constructing an optimal solution of a differential inclusion

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  153–163
  11. Necessary conditions for a minimum of a polynomial of integral functionals

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 2,  91–105
  12. The Gradient Methods for Solving the Cauchy Problem for a Nonlinear ODE System

    Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014),  311–316
  13. Measurement process control in dynamical systems

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 4,  105–109


© Steklov Math. Inst. of RAS, 2024