RUS  ENG
Full version
PEOPLE

Fazullin Ziganur Yusupovich

Publications in Math-Net.Ru

  1. On primary submodules in modules of entire functions that are dual to spaces of $\Omega$-ultradifferentiable functions

    Dokl. RAN. Math. Inf. Proc. Upr., 523 (2025),  3–9
  2. Invariant subspaces in non-quasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval

    Eurasian Math. J., 15:3 (2024),  9–24
  3. Boundary value problem for the equation of unsteady thermal conductivity in a non-cylindrical region

    Chelyab. Fiz.-Mat. Zh., 8:3 (2023),  319–330
  4. On zero sets of weakly localisable pricipal submodules in the Schwartz algebra

    Chelyab. Fiz.-Mat. Zh., 5:3 (2020),  261–270
  5. A boundary value problem for a parabolic-type equation in a non-cylindrical domain

    Mathematical notes of NEFU, 27:2 (2020),  3–20
  6. On necessary and sufficient condition in theory of regularized traces

    Ufimsk. Mat. Zh., 12:4 (2020),  92–100
  7. Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula

    Ufimsk. Mat. Zh., 8:3 (2016),  22–40
  8. Formula of the regularized trace for perturbation in the Schatten–von Neumann of discrete operators

    Ufimsk. Mat. Zh., 7:4 (2015),  109–115
  9. Asymptotics of the eigenvalues and the formula for the trace of perturbations of the Laplace operator on the sphere $\mathbb S^2$

    Mat. Zametki, 77:3 (2005),  434–448
  10. Non-nuclear perturbations of discrete operators and trace formulae

    Mat. Sb., 196:12 (2005),  123–156
  11. A Formula for the First Regularized Trace of a Perturbed Laplace–Beltrami Operator

    Differ. Uravn., 37:3 (2001),  402–409
  12. Regularized trace of a two-dimensional harmonic oscillator

    Mat. Sb., 192:5 (2001),  87–124
  13. Abstract formulas for higher-order regularized traces for discrete operators

    Dokl. Akad. Nauk, 331:4 (1993),  404–405


© Steklov Math. Inst. of RAS, 2025