|
|
Publications in Math-Net.Ru
-
Existence theorem for a fractal Sturm–Liouville problem
Vladikavkaz. Mat. Zh., 26:1 (2024), 27–35
-
Discontinuous matrix Sturm–Liouville problems
Eurasian Math. J., 13:3 (2022), 8–22
-
Singular Hahn–Hamiltonian systems
Ufimsk. Mat. Zh., 14:4 (2022), 131–144
-
Titchmarsh–Weyl theory of the singular Hahn–Sturm–Liouville equation
Vladikavkaz. Mat. Zh., 23:3 (2021), 16–26
-
Existence of solutions for nonlinear singular $q$-Sturm–Liouville problems
Ufimsk. Mat. Zh., 12:1 (2020), 92–103
-
On the spectral theory of nonselfadjoint Dirac operators
Dokl. Akad. Nauk, 348:3 (1996), 305–306
-
Extensions of symmetric Schrodinger operators with matrix potentials
Izv. RAN. Ser. Mat., 59:1 (1995), 49–64
-
On extensions of symmetric Schrödinger operators with matrix potentials
Dokl. Akad. Nauk, 332:1 (1993), 18–20
-
Spectral analysis of nonselfadjoint operator functions with a
continuous-point spectrum
Dokl. Akad. Nauk, 329:1 (1993), 9–11
-
On the spectral theory of second-order nonselfadjoint difference
operators with matrix coefficients
Dokl. Akad. Nauk, 328:6 (1993), 654–656
-
On the theory of nonselfadjoint operators of Schrödinger type with a matrix potential
Izv. RAN. Ser. Mat., 56:5 (1992), 920–933
-
On the spectral theory of a nonselfadjoint operator generated by
an infinite Jacobi matrix
Dokl. Akad. Nauk SSSR, 316:2 (1991), 292–296
-
Self-adjoint and non-self-adjoint extensions of the symmetric operator generated by an infinite Jacobi matrix
Mat. Zametki, 50:5 (1991), 3–8
-
On dilatation theory and spectral analysis of dissipative Schrodinger operators in Weyl's limit-circle case
Izv. Akad. Nauk SSSR Ser. Mat., 54:2 (1990), 242–257
-
On the spectral theory of dissipative difference operators of second order
Mat. Sb., 180:1 (1989), 101–118
-
On the theory of the characteristic function and on the spectral analysis of a dissipative Schrödinger operator
Dokl. Akad. Nauk SSSR, 303:6 (1988), 1307–1309
-
Dissipative extensions of a symmetric Schrödinger operator in the case of Weyl's limiting disk
Dokl. Akad. Nauk SSSR, 293:4 (1987), 777–781
-
Spectral analysis of a new class of nonselfadjoint operators with
continuous-point spectrum
Dokl. Akad. Nauk SSSR, 278:6 (1984), 1309–1313
© , 2024