RUS  ENG
Full version
PEOPLE

Golovin V D

Publications in Math-Net.Ru

  1. On holomorphically complete complex spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 10,  15–22
  2. Criteria for holomorphic completeness. II

    Izv. RAN. Ser. Mat., 59:4 (1995),  9–14
  3. Characterization of analytic sheaves of finite type

    Dokl. Akad. Nauk, 338:3 (1994),  302–303
  4. Cohomologically finite sheaves

    Dokl. Akad. Nauk, 329:5 (1993),  538–539
  5. Cohomology of computable sheaves

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 5,  20–24
  6. Fréchet sheaves over a holomorphically complete complex space

    Dokl. Akad. Nauk SSSR, 321:3 (1991),  446–448
  7. Homologically trivial spaces

    Dokl. Akad. Nauk SSSR, 317:4 (1991),  800–802
  8. Criteria for holomorphic completeness

    Izv. Akad. Nauk SSSR Ser. Mat., 55:4 (1991),  838–850
  9. Analytic Fréchet sheaves of finite type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 5,  18–25
  10. Analytic sheaves: finite type and computability

    Dokl. Akad. Nauk SSSR, 286:1 (1986),  15–18
  11. $\omega$-homology with coefficients in copresheaves

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 1,  25–29
  12. Dimension of the support

    Mat. Zametki, 34:6 (1983),  923–928
  13. On a topological property of holomorphically complete complex spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 2,  11–15
  14. Generalizations of Lefschetz' theorem on hyperplane sections

    Uspekhi Mat. Nauk, 37:5(227) (1982),  177–178
  15. A relative variant of the Oka–Cartan–Serre theory

    Dokl. Akad. Nauk SSSR, 260:1 (1981),  17–19
  16. Homology theory and duality theorems

    Uspekhi Mat. Nauk, 36:1(217) (1981),  59–71
  17. On the homology theory of analytic sheaves

    Izv. Akad. Nauk SSSR Ser. Mat., 44:2 (1980),  262–287
  18. Dualizing complexes in analytical geometry

    Mat. Zametki, 28:2 (1980),  305–312
  19. Relative duality and the Leray spectral sequence for a proper morphism of complex spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 7,  15–21
  20. Hausdorff separation theorems

    Izv. Akad. Nauk SSSR Ser. Mat., 42:2 (1978),  261–269
  21. Separability criteria for the homology and cohomology spaces of coherent analytic sheaves

    Uspekhi Mat. Nauk, 32:6(198) (1977),  249–250
  22. Homology of analytic sheaves

    Dokl. Akad. Nauk SSSR, 225:1 (1975),  41–43
  23. On the global dimension of the sheaf of germs of holomorphic functions

    Dokl. Akad. Nauk SSSR, 223:2 (1975),  273–275
  24. Criteria for the injectivity of analytic sheaves

    Mat. Zametki, 18:4 (1975),  589–596
  25. Alexander–Pontryagin duality in complex analysis

    Mat. Zametki, 13:4 (1973),  561–564
  26. Duality for cohomologies with compact support

    Dokl. Akad. Nauk SSSR, 199:4 (1971),  751–753
  27. On spaces of local cohomologies of complex analytic manifolds

    Funktsional. Anal. i Prilozhen., 5:4 (1971),  66
  28. Cohomologies and analytic differential forms

    Mat. Zametki, 9:5 (1971),  569–573
  29. Duality in the theory of functions of several complex variables

    Mat. Sb. (N.S.), 84(126):4 (1971),  583–594
  30. Duality for coherent analytic sheaves

    Dokl. Akad. Nauk SSSR, 191:4 (1970),  755–758
  31. Duality theorems for cohomology groups of complex manifolds

    Funktsional. Anal. i Prilozhen., 4:1 (1970),  33–41
  32. Certain extensions of topological vector spaces

    Dokl. Akad. Nauk SSSR, 174:1 (1967),  9–12
  33. Continuous linear forms on inductive limits of products of reals

    Dokl. Akad. Nauk SSSR, 173:3 (1967),  503–506
  34. On some spaces of holomorphic functions with isolated singularities

    Mat. Sb. (N.S.), 73(115):1 (1967),  21–41
  35. Duality in the spaces of holomorphic functions with singularities

    Dokl. Akad. Nauk SSSR, 168:1 (1966),  9–12
  36. On mean periodic functions

    Dokl. Akad. Nauk SSSR, 150:1 (1963),  17–20
  37. On a generalization of the notion of periodic continuation

    Dokl. Akad. Nauk SSSR, 149:3 (1963),  502–504
  38. On the Riesz basis of exponential functions

    Dokl. Akad. Nauk SSSR, 145:1 (1962),  27–30


© Steklov Math. Inst. of RAS, 2025