RUS  ENG
Full version
PEOPLE

Devyatykh Grigorii Grigorevich

Publications in Math-Net.Ru

  1. Large-aperture low-loss fibre-optic Raman amplifier of 1.3 μm signals with 30 dB gain

    Kvantovaya Elektronika, 22:7 (1995),  643–644
  2. Single-mode fibre waveguide made of As — S chalcogenide glasses

    Kvantovaya Elektronika, 22:3 (1995),  287–288
  3. Spectroscopic determination and study of the molecular state of water in ultrapure volatile inorganic substances

    Usp. Khim., 64:9 (1995),  872–887
  4. Raman fibre-optic amplifier of signals at the wavelength of 1.3 μm

    Kvantovaya Elektronika, 21:9 (1994),  807–809
  5. Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km

    Kvantovaya Elektronika, 20:2 (1993),  109–110
  6. New method for fabrication of fiber waveguides doped with rare-earth elements

    Kvantovaya Elektronika, 17:7 (1990),  813–814
  7. Single-mode fiber waveguides with the point of zero chromatic dispersion displaced to the wavelength of 1.55 μm

    Kvantovaya Elektronika, 17:3 (1990),  266–267
  8. Low-temperature photoinduced changes of optical losses in fiber lightguides based on chalcogenide glasses

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:1 (1987),  35–38
  9. Single-mode fiber waveguides with losses below 1 dB/km

    Kvantovaya Elektronika, 14:6 (1987),  1309–1310
  10. Wide-band multimode graded fiber waveguides

    Kvantovaya Elektronika, 14:6 (1987),  1152–1154
  11. Multichannel anisotropic single-mode fiber waveguide for fiber-optic sensors

    Kvantovaya Elektronika, 14:3 (1987),  609–611
  12. Investigation of optical and elastic properties of fluoride glass using Brillouin scattering

    Kvantovaya Elektronika, 14:2 (1987),  377–378
  13. The Role of Molecular Complexes in the Preparation of Highly Pure Materials

    Usp. Khim., 55:8 (1986),  1233–1257
  14. Time-dependence of IR-fiber light guides optical losses based on chalcogenide glasses

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:14 (1985),  850–853
  15. Application of the diode laser-based spectrometer for the estimation of $B\,Cl_3$ content in $Ge\,Cl_4$

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:10 (1985),  595–599
  16. Gyroscopes based on depolarized supermode light guides

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:6 (1985),  321–325
  17. Influence of a light-reflecting polymer cladding on the optical losses in glassy chalcogenide waveguides

    Kvantovaya Elektronika, 12:10 (1985),  2167–2169
  18. Fiber waveguide with a fluorine-doped cladding and a pure quartz glass core

    Kvantovaya Elektronika, 12:3 (1985),  634–636
  19. STUDY OF PHOTOELECTRIC PROPERTIES OF ZNSE-GAAS HETEROTRANSITION

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 10:2 (1984),  118–121
  20. Influence of the coherence length of radiation on phase noise in a fiber-optic rotation sensor

    Kvantovaya Elektronika, 11:7 (1984),  1469–1471
  21. Graded fiber waveguide with extremely low losses

    Kvantovaya Elektronika, 11:4 (1984),  646–647
  22. High-sensitive fiber-optic rotating transducer

    Dokl. Akad. Nauk SSSR, 269:2 (1983),  334–336
  23. Fiber waveguides for the middle infrared range made of As–S and As–Se glasses with optical losses below 1 dB/m

    Kvantovaya Elektronika, 10:9 (1983),  1906–1907
  24. Glassy As2Se3 with optical absorption of 60 dB/km

    Kvantovaya Elektronika, 9:7 (1982),  1465–1466
  25. Infrared fiber waveguides made of chalcogenide glasses

    Kvantovaya Elektronika, 9:2 (1982),  438–440
  26. Losses due to microbending and bending in single-mode two- and three-layer W-type waveguides

    Kvantovaya Elektronika, 8:11 (1981),  2507–2510
  27. Polarization properties of single-mode fiber-optic waveguides with weak birefringence

    Kvantovaya Elektronika, 8:11 (1981),  2473–2478
  28. Single-mode low-loss W-type fiber waveguide

    Kvantovaya Elektronika, 8:6 (1981),  1310–1312
  29. Single-mode low-loss fiber waveguide

    Kvantovaya Elektronika, 7:8 (1980),  1823–1825
  30. Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides

    Kvantovaya Elektronika, 7:7 (1980),  1563–1566
  31. Low-loss fiber waveguide prepared by the axial deposition method

    Kvantovaya Elektronika, 7:5 (1980),  1133–1136
  32. Load-bearing optical cable

    Kvantovaya Elektronika, 6:12 (1979),  2657–2659
  33. Optical fiber waveguides with a large-diameter core and low optical losses

    Kvantovaya Elektronika, 6:5 (1979),  1084–1085
  34. Fiber-optical long-distance telecommunication line operating at the wavelength of 1.3 μ

    Kvantovaya Elektronika, 5:11 (1978),  2486–2488
  35. Radiation-optical stability of low-loss glass-fiber waveguides

    Kvantovaya Elektronika, 5:11 (1978),  2484–2486
  36. Drawing of glass-fiber waveguides using CO2 lasers

    Kvantovaya Elektronika, 5:9 (1978),  2064–2065
  37. Low-loss fiber-optical cable

    Kvantovaya Elektronika, 5:3 (1978),  700–703
  38. Investigation of optical-fiber systems for communication between computer units

    Kvantovaya Elektronika, 4:11 (1977),  2456–2459
  39. Glass-fiber waveguide with losses below 1 dB/km

    Kvantovaya Elektronika, 4:9 (1977),  2041–2043
  40. Low-loss fiber guide with SiO2+GeO2 core and borosilicate cladding

    Kvantovaya Elektronika, 3:11 (1976),  2483–2485
  41. Graded-index glass fiber optical waveguide

    Kvantovaya Elektronika, 3:3 (1976),  667–669
  42. Low-loss glass-fiber waveguides

    Kvantovaya Elektronika, 2:9 (1975),  2103–2105
  43. Chromatographic analysis of mixtures formed by some volatile inorganic hydrides

    Dokl. Akad. Nauk SSSR, 156:5 (1964),  1105–1108
  44. Separation of silicon isotopes in monosilane by thermodiffusion

    Dokl. Akad. Nauk SSSR, 149:6 (1963),  1293–1294
  45. Separation of silicon isotopes by monosilane rectification

    Dokl. Akad. Nauk SSSR, 138:2 (1961),  402–404

  46. Evgeniĭ Mikhaĭlovich Dianov

    Kvantovaya Elektronika, 23:1 (1996),  94


© Steklov Math. Inst. of RAS, 2024