|
|
Publications in Math-Net.Ru
-
Large-aperture low-loss fibre-optic Raman amplifier of 1.3 μm signals with 30 dB gain
Kvantovaya Elektronika, 22:7 (1995), 643–644
-
Single-mode fibre waveguide made of As — S chalcogenide glasses
Kvantovaya Elektronika, 22:3 (1995), 287–288
-
Spectroscopic determination and study of the molecular state of water in ultrapure volatile inorganic substances
Usp. Khim., 64:9 (1995), 872–887
-
Raman fibre-optic amplifier of signals at the wavelength of 1.3 μm
Kvantovaya Elektronika, 21:9 (1994), 807–809
-
Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km
Kvantovaya Elektronika, 20:2 (1993), 109–110
-
New method for fabrication of fiber waveguides doped with rare-earth elements
Kvantovaya Elektronika, 17:7 (1990), 813–814
-
Single-mode fiber waveguides with the point of zero chromatic dispersion displaced to the wavelength of 1.55 μm
Kvantovaya Elektronika, 17:3 (1990), 266–267
-
Low-temperature photoinduced changes of optical losses in fiber lightguides based on chalcogenide glasses
Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:1 (1987), 35–38
-
Single-mode fiber waveguides with losses below 1 dB/km
Kvantovaya Elektronika, 14:6 (1987), 1309–1310
-
Wide-band multimode graded fiber waveguides
Kvantovaya Elektronika, 14:6 (1987), 1152–1154
-
Multichannel anisotropic single-mode fiber waveguide for fiber-optic sensors
Kvantovaya Elektronika, 14:3 (1987), 609–611
-
Investigation of optical and elastic properties of fluoride glass using Brillouin scattering
Kvantovaya Elektronika, 14:2 (1987), 377–378
-
The Role of Molecular Complexes in the Preparation of Highly Pure Materials
Usp. Khim., 55:8 (1986), 1233–1257
-
Time-dependence of IR-fiber light guides optical losses based on chalcogenide glasses
Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:14 (1985), 850–853
-
Application of the diode laser-based spectrometer for the estimation of $B\,Cl_3$ content in $Ge\,Cl_4$
Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:10 (1985), 595–599
-
Gyroscopes based on depolarized supermode light guides
Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:6 (1985), 321–325
-
Influence of a light-reflecting polymer cladding on the optical losses in glassy chalcogenide waveguides
Kvantovaya Elektronika, 12:10 (1985), 2167–2169
-
Fiber waveguide with a fluorine-doped cladding and a pure quartz glass core
Kvantovaya Elektronika, 12:3 (1985), 634–636
-
STUDY OF PHOTOELECTRIC PROPERTIES OF ZNSE-GAAS HETEROTRANSITION
Pisma v Zhurnal Tekhnicheskoi Fiziki, 10:2 (1984), 118–121
-
Influence of the coherence length of radiation on phase noise in a fiber-optic rotation sensor
Kvantovaya Elektronika, 11:7 (1984), 1469–1471
-
Graded fiber waveguide with extremely low losses
Kvantovaya Elektronika, 11:4 (1984), 646–647
-
High-sensitive fiber-optic rotating transducer
Dokl. Akad. Nauk SSSR, 269:2 (1983), 334–336
-
Fiber waveguides for the middle infrared range made of As–S and As–Se glasses with optical losses below 1 dB/m
Kvantovaya Elektronika, 10:9 (1983), 1906–1907
-
Glassy As2Se3 with optical absorption of 60 dB/km
Kvantovaya Elektronika, 9:7 (1982), 1465–1466
-
Infrared fiber waveguides made of chalcogenide glasses
Kvantovaya Elektronika, 9:2 (1982), 438–440
-
Losses due to microbending and bending in single-mode two- and three-layer W-type waveguides
Kvantovaya Elektronika, 8:11 (1981), 2507–2510
-
Polarization properties of single-mode fiber-optic waveguides with weak birefringence
Kvantovaya Elektronika, 8:11 (1981), 2473–2478
-
Single-mode low-loss W-type fiber waveguide
Kvantovaya Elektronika, 8:6 (1981), 1310–1312
-
Single-mode low-loss fiber waveguide
Kvantovaya Elektronika, 7:8 (1980), 1823–1825
-
Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides
Kvantovaya Elektronika, 7:7 (1980), 1563–1566
-
Low-loss fiber waveguide prepared by the axial deposition method
Kvantovaya Elektronika, 7:5 (1980), 1133–1136
-
Load-bearing optical cable
Kvantovaya Elektronika, 6:12 (1979), 2657–2659
-
Optical fiber waveguides with a large-diameter core and low optical losses
Kvantovaya Elektronika, 6:5 (1979), 1084–1085
-
Fiber-optical long-distance telecommunication line operating at the wavelength of 1.3 μ
Kvantovaya Elektronika, 5:11 (1978), 2486–2488
-
Radiation-optical stability of low-loss glass-fiber waveguides
Kvantovaya Elektronika, 5:11 (1978), 2484–2486
-
Drawing of glass-fiber waveguides using CO2 lasers
Kvantovaya Elektronika, 5:9 (1978), 2064–2065
-
Low-loss fiber-optical cable
Kvantovaya Elektronika, 5:3 (1978), 700–703
-
Investigation of optical-fiber systems for communication between computer units
Kvantovaya Elektronika, 4:11 (1977), 2456–2459
-
Glass-fiber waveguide with losses below 1 dB/km
Kvantovaya Elektronika, 4:9 (1977), 2041–2043
-
Low-loss fiber guide with SiO2+GeO2 core and borosilicate cladding
Kvantovaya Elektronika, 3:11 (1976), 2483–2485
-
Graded-index glass fiber optical waveguide
Kvantovaya Elektronika, 3:3 (1976), 667–669
-
Low-loss glass-fiber waveguides
Kvantovaya Elektronika, 2:9 (1975), 2103–2105
-
Chromatographic analysis of mixtures formed by some volatile inorganic hydrides
Dokl. Akad. Nauk SSSR, 156:5 (1964), 1105–1108
-
Separation of silicon isotopes in monosilane by thermodiffusion
Dokl. Akad. Nauk SSSR, 149:6 (1963), 1293–1294
-
Separation of silicon isotopes by monosilane rectification
Dokl. Akad. Nauk SSSR, 138:2 (1961), 402–404
-
Evgeniĭ Mikhaĭlovich Dianov
Kvantovaya Elektronika, 23:1 (1996), 94
© , 2024