RUS  ENG
Full version
PEOPLE

Sazonov Leonid Ivanovich

Publications in Math-Net.Ru

  1. High-frequency asymptotics of solutions of ODE in a Banach space

    Izv. RAN. Ser. Mat., 81:6 (2017),  180–198
  2. On the Existence of Periodic Solutions of Ordinary Differential Equations with High-Frequency Summands in a Banach Space

    Mat. Zametki, 100:6 (2016),  900–910
  3. On the stability of bounded solutions to the Navier–Stokes equations in the whole space

    Vladikavkaz. Mat. Zh., 17:4 (2015),  67–74
  4. Existence of transitions between stationary regimes of the Navier–Stokes equations in the entire space

    Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013),  1555–1568
  5. Estimates of Perturbed Oseen Semigroups and Their Applications to the Navier–Stokes System in $\mathbb{R}^n$

    Mat. Zametki, 91:6 (2012),  880–895
  6. The three-dimensional stationary flow problem at small Reynolds numbers

    Izv. RAN. Ser. Mat., 75:6 (2011),  99–128
  7. The existence of transitions between stationary regimes of the flow problem

    Vladikavkaz. Mat. Zh., 13:4 (2011),  60–69
  8. Estimates of the perturbed Oseen semigroup in $\mathbb R^n$ and stability of the Navier–Stokes flow

    Vladikavkaz. Mat. Zh., 12:3 (2010),  71–82
  9. Estimates for the perturbed Oseen semigroup

    Vladikavkaz. Mat. Zh., 11:3 (2009),  51–61
  10. On the existence of a generalized solution of the conjugation problem for the Navier–Stokes system

    Mat. Sb., 198:12 (2007),  63–86
  11. On applicability of the projection method to two-dimensional Toeplitz operators with measurable symbol

    Sibirsk. Mat. Zh., 47:3 (2006),  636–648
  12. The justification of an asymptotic expansion for the solution of the two-dimensional flow problem at small Reynolds numbers

    Izv. RAN. Ser. Mat., 67:5 (2003),  125–154
  13. Stability of periodic solutions of Navier–Stokes equations in a three-dimensional exterior domain

    Izv. RAN. Ser. Mat., 67:4 (2003),  155–170
  14. Two-Dimensional Töplitz Operators with Measurable Symbols

    Mat. Zametki, 74:1 (2003),  88–98
  15. $C^*$-algebras of bisingular operators with discontinuous coefficients

    Izv. RAN. Ser. Mat., 63:2 (1999),  167–200
  16. On the asymptotic behavior of the solution of the two-dimensional stationary problem of the flow past a body far from it

    Mat. Zametki, 65:2 (1999),  246–253
  17. Asymptotics of the eigenvalues for a boundary value problem with $\delta$-like coefficients

    Differ. Uravn., 33:4 (1997),  470–477
  18. On bisingular operators with measurable coefficients

    Sibirsk. Mat. Zh., 37:2 (1996),  389–398
  19. On the asymptotics of the solution to the three-dimensional problem of flow far from streamlined bodies

    Izv. RAN. Ser. Mat., 59:5 (1995),  173–196
  20. Justification of the linearization method in the flow problem

    Izv. RAN. Ser. Mat., 58:5 (1994),  85–109
  21. On bisingular operators in the space $L_p(\mathbb R^2)$ with some invariance conditions

    Mat. Zametki, 55:4 (1994),  74–82
  22. On origination of auto-oscillations in flowing

    Sibirsk. Mat. Zh., 35:6 (1994),  1354–1361
  23. On the existence of a stationary symmetric solution of the two-dimensional fluid flow problem

    Mat. Zametki, 54:6 (1993),  138–141
  24. Justification of the linearization method in a flow problem

    Dokl. Akad. Nauk, 323:1 (1992),  48–51
  25. Stability of the stationary solutions of parabolic equations and of a Navier–Stokes system in a whole space

    Sibirsk. Mat. Zh., 29:1 (1988),  151–158
  26. Bisingular characteristic operators with discontinuous coefficients in the space $L_2(\mathbf R_2)$

    Funktsional. Anal. i Prilozhen., 19:2 (1985),  90–91
  27. Normal solvability of two-dimensional Toeplitz operators

    Mat. Zametki, 30:2 (1981),  261–268
  28. On singular operators with a non-Carleman shift and their symbols

    Dokl. Akad. Nauk SSSR, 254:5 (1980),  1076–1080
  29. Singular integral operators with non-karleman shift on an open contour

    Funktsional. Anal. i Prilozhen., 14:1 (1980),  71–72
  30. Singular integral operators with non-Carleman shift

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 3,  22–31
  31. On bisingular integral operators in spaces of Hölder functions

    Dokl. Akad. Nauk SSSR, 246:2 (1979),  278–282
  32. On singular integral operators with non-Carleman shift

    Dokl. Akad. Nauk SSSR, 237:6 (1977),  1289–1292
  33. A priori estimates for characteristic bisingular integral operators

    Dokl. Akad. Nauk SSSR, 217:2 (1974),  285–287
  34. On a solution of the problem of linear conjugation for analytic functions of two complex variables

    Dokl. Akad. Nauk SSSR, 209:6 (1973),  1288–1291
  35. A bisingular equation with translation in the space $L_p$

    Mat. Zametki, 13:3 (1973),  385–393


© Steklov Math. Inst. of RAS, 2025