RUS  ENG
Full version
PEOPLE

Seregin Grigorii Aleksandrovich

Publications in Math-Net.Ru

  1. A note on weak solutions to the Navier–Stokes equations that are locally in $L_\infty(L^{3,\infty})$

    Algebra i Analiz, 32:3 (2020),  238–253
  2. On Type I blowups of suitable weak solutions to Navier–Stokes equations near boundary

    Zap. Nauchn. Sem. POMI, 489 (2020),  81–95
  3. Sufficient conditions on Liouville type theorems for the 3D steady Navier–Stokes equations

    Algebra i Analiz, 31:2 (2019),  269–278
  4. Remarks on Liouville type theorems for steady-state Navier–Stokes equations

    Algebra i Analiz, 30:2 (2018),  238–248
  5. Liouville-type theorems for the Navier–Stokes equations

    Uspekhi Mat. Nauk, 73:4(442) (2018),  103–170
  6. Regularity of solutions to the Navier–Stokes equations in $\dot{B}_{\infty,\infty}^{-1}$

    Zap. Nauchn. Sem. POMI, 477 (2018),  119–128
  7. $LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$

    Zap. Nauchn. Sem. POMI, 459 (2017),  37–57
  8. Remark on Wolf's condition for boundary regularity of Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 444 (2016),  124–132
  9. Liouville theorem for 2D Navier–Stokes equations in half space

    Zap. Nauchn. Sem. POMI, 425 (2014),  137–148
  10. Rescalings at possible singularities of Navier–Stokes equations in half-space

    Algebra i Analiz, 25:5 (2013),  146–172
  11. A Liouville theorem for the Stokes system in half-space

    Zap. Nauchn. Sem. POMI, 410 (2013),  25–35
  12. Note on bounded scale-invariant quantities for the Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 397 (2011),  150–156
  13. On a bounded shear flow in half-space

    Zap. Nauchn. Sem. POMI, 385 (2010),  200–205
  14. Necessary conditions of potential blow up for Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 385 (2010),  187–199
  15. A note on local boundary regularity for the Stokes system

    Zap. Nauchn. Sem. POMI, 370 (2009),  151–159
  16. On a reverse Hölder inequality for a class of suitable weak solutions to the Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 362 (2008),  325–336
  17. Local regularity for suitable weak solutions of the Navier–Stokes equations

    Uspekhi Mat. Nauk, 62:3(375) (2007),  149–168
  18. Existence of global solutions for a parabolic system related to the nonlinear Stokes problem

    Zap. Nauchn. Sem. POMI, 348 (2007),  254–271
  19. New version of the Ladyzhenskaya–Prodi–Serrin condition

    Algebra i Analiz, 18:1 (2006),  124–143
  20. Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces

    Zap. Nauchn. Sem. POMI, 336 (2006),  199–210
  21. A sufficient condition of local regularity for the Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 336 (2006),  46–54
  22. Boundary partial regularity for the Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 310 (2004),  158–190
  23. Backward uniqueness for the heat operator in half-space

    Algebra i Analiz, 15:1 (2003),  201–214
  24. $L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness

    Uspekhi Mat. Nauk, 58:2(350) (2003),  3–44
  25. On smoothness of suitable weak solutions to the Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 306 (2003),  186–198
  26. Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary

    Zap. Nauchn. Sem. POMI, 295 (2003),  168–179
  27. Differentiability properties of weak solutions of the Navier–Stokes equations

    Algebra i Analiz, 14:1 (2002),  194–237
  28. On Backward uniqueness for parabolic equations

    Zap. Nauchn. Sem. POMI, 288 (2002),  100–103
  29. Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 271 (2000),  204–223
  30. $J_p^1$-quasiconvexity and variational problems on sets of solenoidal vector fields

    Algebra i Analiz, 11:2 (1999),  170–217
  31. Partial regularity for solutions to the modified Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 259 (1999),  238–253
  32. On reqularity of solutions to two-dimensional equations of the dynamics of fluids with nonlinear viscosity

    Zap. Nauchn. Sem. POMI, 259 (1999),  145–166
  33. A variational problem on the phase equilibrium of an elastic body

    Algebra i Analiz, 10:3 (1998),  92–132
  34. Smoothness of solutions of equations describing generalized Newtonian flows and estimates for the dimensions of their attractors

    Izv. RAN. Ser. Mat., 62:1 (1998),  59–122
  35. Flow of two-dimensional generalized Newtonian fluid

    Algebra i Analiz, 9:1 (1997),  167–200
  36. On the smoothness of solutions of systems describing the flow of generalized Newtonian fluids and the estimation of the dimensions of their attractors

    Dokl. Akad. Nauk, 354:5 (1997),  590–592
  37. On attractors for equations describing the flow of generalized Newtonian fluids

    Zap. Nauchn. Sem. POMI, 249 (1997),  256–293
  38. Regularity for minimaizers of some variational problems in plasticity theory

    Zap. Nauchn. Sem. POMI, 243 (1997),  270–298
  39. Two-dimensional variational problems of the theory of plasticity

    Izv. RAN. Ser. Mat., 60:1 (1996),  175–210
  40. Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory

    Zap. Nauchn. Sem. POMI, 233 (1996),  227–232
  41. On the regularity of solutions of variational problems in the theory of phase transitions in an elastic body

    Algebra i Analiz, 7:6 (1995),  153–187
  42. Some remarks on the mollification of piecewise-linear homeomorphisms

    Zap. Nauchn. Sem. POMI, 221 (1995),  235–242
  43. Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity

    Algebra i Analiz, 6:6 (1994),  128–153
  44. Some remarks on variational problems for functionals with $L\ln L$ growth

    Zap. Nauchn. Sem. POMI, 213 (1994),  164–178
  45. Differential properties of the stress tensor in the Coulomb-Mohr theory of plasticity

    Algebra i Analiz, 4:6 (1992),  234–252
  46. On the regularity of minimizers of some variational problems in the theory of plasticity

    Algebra i Analiz, 4:5 (1992),  181–218
  47. A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening

    Zap. Nauchn. Sem. POMI, 200 (1992),  167–176
  48. On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations

    Zap. Nauchn. Sem. LOMI, 197 (1992),  87–119
  49. On the dynamical system associated with two dimensional equations of the motion of Bingham fluid

    Zap. Nauchn. Sem. LOMI, 188 (1991),  128–142
  50. On the regularity of weak solutions of variational problems of plasticity theory

    Algebra i Analiz, 2:2 (1990),  121–140
  51. Regularity of weak solutions of variational problems in plasticity theory

    Dokl. Akad. Nauk SSSR, 314:6 (1990),  1344–1349
  52. Differential properties of extremals of variational problems that arise in the theory of plasticity

    Differ. Uravn., 26:6 (1990),  1033–1044
  53. Differential properties of extremals of variational problems in the mechanics of viscoplastic media

    Trudy Mat. Inst. Steklov., 188 (1990),  117–124
  54. On the differentiability of extremals of variational problems of the mechanics of ideally elastoplastic media

    Differ. Uravn., 23:11 (1987),  1981–1991
  55. On the differentiability of local extremals of variational problems of the mechanics of rigidly viscoplastic media

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10,  23–30
  56. A variational-difference scheme for problems of limit equilibrium

    Zh. Vychisl. Mat. Mat. Fiz., 27:1 (1987),  83–92
  57. On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory

    Mat. Sb. (N.S.), 130(172):3(7) (1986),  291–309
  58. Variational-difference schemes for problems of the mechanics of ideally elastoplastic media

    Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985),  237–253
  59. Well-posedness of variational problems of the mechanics of ideally elastoplastic media

    Dokl. Akad. Nauk SSSR, 276:1 (1984),  71–75
  60. Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity

    Izv. Akad. Nauk SSSR Ser. Mat., 48:2 (1984),  420–445
  61. Well-posedness of initial-boundary value problems in the mechanics of ideally elastoplastic media

    Dokl. Akad. Nauk SSSR, 270:4 (1983),  810–813

  62. On the 90th birthday of Vsevolod Alekseevich Solonnikov

    Uspekhi Mat. Nauk, 78:5(473) (2023),  187–198
  63. To Solonnikov's jubilee

    Zap. Nauchn. Sem. POMI, 362 (2008),  5–14
  64. Olga Aleksandrovna Ladyzhenskaya (obituary)

    Uspekhi Mat. Nauk, 59:3(357) (2004),  151–152
  65. To the 70th anniversary of Nina Nikolaevna Ural'tseva

    Zap. Nauchn. Sem. POMI, 310 (2004),  7–18
  66. Ol'ga Aleksandrovna Ladyzhenskaya (on her 80th birthday)

    Uspekhi Mat. Nauk, 58:2(350) (2003),  181–206
  67. To Vsevolod Alekseevich Solonnikov on the occasion of his jubilee

    Zap. Nauchn. Sem. POMI, 306 (2003),  7–15
  68. To the jubillee of O. A. Ladyzhenskaya

    Zap. Nauchn. Sem. POMI, 288 (2002),  5–13


© Steklov Math. Inst. of RAS, 2024