RUS  ENG
Full version
PEOPLE

Berezhnoi Evgenii Ivanovich

Publications in Math-Net.Ru

  1. Multipliers for the Calderón–Lozanovskii construction

    Mat. Zametki, 117:2 (2025),  181–195
  2. Calderón–Lozanovskiĭ construction for a couple of global Morrey spaces

    Eurasian Math. J., 14:1 (2023),  25–38
  3. Multipliers for the Calderón construction

    Funktsional. Anal. i Prilozhen., 57:2 (2023),  3–17
  4. A New Approach to Grand and Small Norms in Discrete Lebesgue Spaces

    Mat. Zametki, 114:6 (2023),  1118–1133
  5. Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation

    Funktsional. Anal. i Prilozhen., 56:1 (2022),  26–36
  6. On interpolation and $K$-monotonicity for discrete local Morrey spaces

    Algebra i Analiz, 33:3 (2021),  1–30
  7. The Calderón construction for a couple of global Morrey spaces

    Izv. RAN. Ser. Mat., 85:5 (2021),  5–24
  8. Sharp Extrapolation Theorems for Local Morrey Spaces

    Trudy Mat. Inst. Steklova, 312 (2021),  82–97
  9. Calculation of the Calderón–Lozanovskii construction for a couple of local Morrey spaces

    Eurasian Math. J., 11:3 (2020),  21–34
  10. Extreme spaces for extrapolation

    Funktsional. Anal. i Prilozhen., 54:1 (2020),  3–10
  11. Exact Calculation of Sums of Cones in Lorentz Spaces

    Funktsional. Anal. i Prilozhen., 52:2 (2018),  66–71
  12. Exact Calculation of Sums of the Lorentz Spaces $\Lambda^{\alpha}$ and Applications

    Mat. Zametki, 104:5 (2018),  649–658
  13. On representation of cones of monotone functions in weighted Lebesgue spaces and extrapolation of operators on these cones

    Algebra i Analiz, 29:4 (2017),  1–44
  14. A discrete version of local Morrey spaces

    Izv. RAN. Ser. Mat., 81:1 (2017),  3–30
  15. Can Yano's extrapolation theorem be strengthened?

    Funktsional. Anal. i Prilozhen., 49:2 (2015),  82–85
  16. On compactness of maximal operators

    Sibirsk. Mat. Zh., 56:4 (2015),  752–761
  17. The Resonance Theorem for Subspaces

    Mat. Zametki, 95:6 (2014),  803–811
  18. Correction theorem for Sobolev spaces constructed by a symmetric space

    Trudy Mat. Inst. Steklova, 284 (2014),  38–55
  19. Schur test for the Hardy operator

    Eurasian Math. J., 4:4 (2013),  17–29
  20. A Simple Proof of an Extrapolation Theorem for Marcinkiewicz Spaces

    Mat. Zametki, 93:6 (2013),  939–943
  21. A sharp extrapolation theorem for Lorentz spaces

    Sibirsk. Mat. Zh., 54:3 (2013),  520–535
  22. Estimates of the Cordoba–Fernandez operator in Marcinkiewicz spaces

    Model. Anal. Inform. Sist., 16:4 (2009),  34–45
  23. On Subspaces of $C[0,1]$ Consisting of Nonsmooth Functions

    Mat. Zametki, 81:4 (2007),  490–495
  24. A Subspace of Hölder Space Consisting Only of Nonsmoothest Functions

    Mat. Zametki, 74:3 (2003),  329–339
  25. The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere

    Mat. Zametki, 73:3 (2003),  348–354
  26. The halo problem in the theory of differentiation of integrals

    Izv. RAN. Ser. Mat., 66:4 (2002),  3–26
  27. The Correction Theorem for Anisotropic Spaces

    Mat. Zametki, 70:3 (2001),  323–333
  28. Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis

    Mat. Zametki, 69:4 (2001),  515–523
  29. Spaces of functions of generalized bounded variation. II. Questions of uniform convergence of Fourier series

    Sibirsk. Mat. Zh., 42:3 (2001),  515–532
  30. A Sharp Extrapolation Theorem for Operators

    Funktsional. Anal. i Prilozhen., 34:3 (2000),  66–68
  31. Spaces of functions of generalized bounded variation. I. Embedding theorems. Estimates for Lebesgue constants

    Sibirsk. Mat. Zh., 40:5 (1999),  997–1011
  32. Improved interpolation theorems for a class of linear operators

    Izv. RAN. Ser. Mat., 62:4 (1998),  3–24
  33. A correction theorem for functions with integral smoothness

    Zap. Nauchn. Sem. POMI, 255 (1998),  17–35
  34. Estimates for a uniform modulus of continuity of functions from symmetric spaces

    Izv. RAN. Ser. Mat., 60:2 (1996),  3–20
  35. The inverse interpolation problem for operators

    Mat. Zametki, 59:3 (1996),  323–333
  36. Theorems on the representation of spaces, and Schur's lemma

    Dokl. Akad. Nauk, 344:6 (1995),  727–729
  37. Differential properties of bases and halo problem for rearrangement-invariant spaces

    Sibirsk. Mat. Zh., 36:6 (1995),  1234–1250
  38. The exact correction theorem for spaces of functions of generalized bounded variation

    Mat. Zametki, 56:5 (1994),  10–21
  39. Double-weighted estimates of integration operator for classes $\Phi(L)$

    Mat. Zametki, 53:4 (1993),  142–145
  40. Sharp estimates for operators on cones in ideal spaces

    Trudy Mat. Inst. Steklov., 204 (1993),  3–34
  41. Hardy-type inequalities on cones in ideal spaces

    Dokl. Akad. Nauk, 326:2 (1992),  215–218
  42. Interpolation of the continuity property for partially additive operators

    Sibirsk. Mat. Zh., 33:2 (1992),  157–163
  43. Two weight estimate for certain integral operators

    Trudy Mat. Inst. Steklov., 201 (1992),  14–25
  44. Weighted inequalities of Hardy type in general ideal spaces

    Dokl. Akad. Nauk SSSR, 317:4 (1991),  782–785
  45. Differentiation bases and symmetric spaces

    Funktsional. Anal. i Prilozhen., 24:3 (1990),  66–67
  46. A correction theorem for a space of functions of generalized bounded variation

    Mat. Zametki, 46:3 (1989),  116–118
  47. Metric properties of the space $\varphi(X,Y)$

    Funktsional. Anal. i Prilozhen., 19:4 (1985),  74–75
  48. Geometrical properties of the space $\varphi(X,Y)$

    Funktsional. Anal. i Prilozhen., 18:1 (1984),  59–60
  49. On a theorem of G. Ya. Lozanovskiǐ

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 2,  81–83
  50. Approximation spaces and interpolation

    Dokl. Akad. Nauk SSSR, 255:6 (1980),  1289–1291
  51. Banach spaces, concave functions, and interpolation of linear operators

    Funktsional. Anal. i Prilozhen., 14:4 (1980),  62–63


© Steklov Math. Inst. of RAS, 2025