|
|
Publications in Math-Net.Ru
-
Multipliers for the Calderón–Lozanovskii construction
Mat. Zametki, 117:2 (2025), 181–195
-
Calderón–Lozanovskiĭ construction for a couple of global Morrey spaces
Eurasian Math. J., 14:1 (2023), 25–38
-
Multipliers for the Calderón construction
Funktsional. Anal. i Prilozhen., 57:2 (2023), 3–17
-
A New Approach to Grand and Small Norms in Discrete Lebesgue Spaces
Mat. Zametki, 114:6 (2023), 1118–1133
-
Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation
Funktsional. Anal. i Prilozhen., 56:1 (2022), 26–36
-
On interpolation and $K$-monotonicity for discrete local Morrey spaces
Algebra i Analiz, 33:3 (2021), 1–30
-
The Calderón construction for a couple of global Morrey spaces
Izv. RAN. Ser. Mat., 85:5 (2021), 5–24
-
Sharp Extrapolation Theorems for Local Morrey Spaces
Trudy Mat. Inst. Steklova, 312 (2021), 82–97
-
Calculation of the Calderón–Lozanovskii construction for a couple of local Morrey spaces
Eurasian Math. J., 11:3 (2020), 21–34
-
Extreme spaces for extrapolation
Funktsional. Anal. i Prilozhen., 54:1 (2020), 3–10
-
Exact Calculation of Sums of Cones in Lorentz Spaces
Funktsional. Anal. i Prilozhen., 52:2 (2018), 66–71
-
Exact Calculation of Sums of the Lorentz Spaces $\Lambda^{\alpha}$ and Applications
Mat. Zametki, 104:5 (2018), 649–658
-
On representation of cones of monotone functions in weighted Lebesgue spaces and extrapolation of operators on these cones
Algebra i Analiz, 29:4 (2017), 1–44
-
A discrete version of local Morrey spaces
Izv. RAN. Ser. Mat., 81:1 (2017), 3–30
-
Can Yano's extrapolation theorem be strengthened?
Funktsional. Anal. i Prilozhen., 49:2 (2015), 82–85
-
On compactness of maximal operators
Sibirsk. Mat. Zh., 56:4 (2015), 752–761
-
The Resonance Theorem for Subspaces
Mat. Zametki, 95:6 (2014), 803–811
-
Correction theorem for Sobolev spaces constructed by a symmetric space
Trudy Mat. Inst. Steklova, 284 (2014), 38–55
-
Schur test for the Hardy operator
Eurasian Math. J., 4:4 (2013), 17–29
-
A Simple Proof of an Extrapolation Theorem for Marcinkiewicz Spaces
Mat. Zametki, 93:6 (2013), 939–943
-
A sharp extrapolation theorem for Lorentz spaces
Sibirsk. Mat. Zh., 54:3 (2013), 520–535
-
Estimates of the Cordoba–Fernandez operator in Marcinkiewicz spaces
Model. Anal. Inform. Sist., 16:4 (2009), 34–45
-
On Subspaces of $C[0,1]$ Consisting of Nonsmooth Functions
Mat. Zametki, 81:4 (2007), 490–495
-
A Subspace of Hölder Space Consisting Only of Nonsmoothest Functions
Mat. Zametki, 74:3 (2003), 329–339
-
The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere
Mat. Zametki, 73:3 (2003), 348–354
-
The halo problem in the theory of differentiation of integrals
Izv. RAN. Ser. Mat., 66:4 (2002), 3–26
-
The Correction Theorem for Anisotropic Spaces
Mat. Zametki, 70:3 (2001), 323–333
-
Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis
Mat. Zametki, 69:4 (2001), 515–523
-
Spaces of functions of generalized bounded variation. II. Questions of uniform convergence of Fourier series
Sibirsk. Mat. Zh., 42:3 (2001), 515–532
-
A Sharp Extrapolation Theorem for Operators
Funktsional. Anal. i Prilozhen., 34:3 (2000), 66–68
-
Spaces of functions of generalized bounded variation. I. Embedding theorems. Estimates for Lebesgue constants
Sibirsk. Mat. Zh., 40:5 (1999), 997–1011
-
Improved interpolation theorems for a class of linear operators
Izv. RAN. Ser. Mat., 62:4 (1998), 3–24
-
A correction theorem for functions with integral smoothness
Zap. Nauchn. Sem. POMI, 255 (1998), 17–35
-
Estimates for a uniform modulus of continuity of functions from symmetric spaces
Izv. RAN. Ser. Mat., 60:2 (1996), 3–20
-
The inverse interpolation problem for operators
Mat. Zametki, 59:3 (1996), 323–333
-
Theorems on the representation of spaces, and Schur's lemma
Dokl. Akad. Nauk, 344:6 (1995), 727–729
-
Differential properties of bases and halo problem for rearrangement-invariant spaces
Sibirsk. Mat. Zh., 36:6 (1995), 1234–1250
-
The exact correction theorem for spaces of functions of generalized bounded variation
Mat. Zametki, 56:5 (1994), 10–21
-
Double-weighted estimates of integration operator for classes $\Phi(L)$
Mat. Zametki, 53:4 (1993), 142–145
-
Sharp estimates for operators on cones in ideal spaces
Trudy Mat. Inst. Steklov., 204 (1993), 3–34
-
Hardy-type inequalities on cones in ideal spaces
Dokl. Akad. Nauk, 326:2 (1992), 215–218
-
Interpolation of the continuity property for partially additive operators
Sibirsk. Mat. Zh., 33:2 (1992), 157–163
-
Two weight estimate for certain integral operators
Trudy Mat. Inst. Steklov., 201 (1992), 14–25
-
Weighted inequalities of Hardy type in general ideal spaces
Dokl. Akad. Nauk SSSR, 317:4 (1991), 782–785
-
Differentiation bases and symmetric spaces
Funktsional. Anal. i Prilozhen., 24:3 (1990), 66–67
-
A correction theorem for a space of functions of generalized bounded variation
Mat. Zametki, 46:3 (1989), 116–118
-
Metric properties of the space $\varphi(X,Y)$
Funktsional. Anal. i Prilozhen., 19:4 (1985), 74–75
-
Geometrical properties of the space $\varphi(X,Y)$
Funktsional. Anal. i Prilozhen., 18:1 (1984), 59–60
-
On a theorem of G. Ya. Lozanovskiǐ
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 2, 81–83
-
Approximation spaces and interpolation
Dokl. Akad. Nauk SSSR, 255:6 (1980), 1289–1291
-
Banach spaces, concave functions, and interpolation of linear operators
Funktsional. Anal. i Prilozhen., 14:4 (1980), 62–63
© , 2025