RUS  ENG
Full version
PEOPLE

Kuz'min Leonid Viktorovich

Publications in Math-Net.Ru

  1. Arithmetic of certain $\ell$-extensions ramified at three places. IV

    Izv. RAN. Ser. Mat., 88:2 (2024),  80–95
  2. On a family of algebraic number fields with finite 3-class field tower

    Mat. Sb., 215:7 (2024),  52–60
  3. Arithmetic of certain $\ell$-extensions ramified at three places. III

    Izv. RAN. Ser. Mat., 86:6 (2022),  123–142
  4. Arithmetic of certain $\ell$-extensions ramified at three places. II

    Izv. RAN. Ser. Mat., 85:5 (2021),  132–151
  5. Arithmetic of Certain $\ell $-Extensions Ramified at Three Places

    Trudy Mat. Inst. Steklova, 307 (2019),  78–99
  6. Burnside-type problems in discrete geometry

    Diskr. Mat., 30:3 (2018),  68–76
  7. Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension of an algebraic number field

    Izv. RAN. Ser. Mat., 82:3 (2018),  90–107
  8. On a new type of $\ell$-adic regulator for algebraic number fields. II

    Algebra i Analiz, 27:6 (2015),  163–173
  9. On a new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)

    Izv. RAN. Ser. Mat., 79:1 (2015),  115–152
  10. On $\ell$-adic logarithms of Gauss sums

    Izv. RAN. Ser. Mat., 78:3 (2014),  111–134
  11. The feeble conjecture on the 2-adic regulator for some 2-extensions

    Izv. RAN. Ser. Mat., 76:2 (2012),  141–150
  12. Some remarks on the $\ell$-adic regulator. V. Growth of the $\ell$-adic regulator in the cyclotomic $Z_\ell$-extension of an algebraic number field

    Izv. RAN. Ser. Mat., 73:5 (2009),  105–170
  13. On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields

    Fundam. Prikl. Mat., 14:8 (2008),  151–157
  14. A property of the $\ell$-adic logarithms of units of non-abelian local fields

    Izv. RAN. Ser. Mat., 70:5 (2006),  97–122
  15. Some remarks on the $\ell$-adic regulator. IV

    Izv. RAN. Ser. Mat., 64:2 (2000),  43–88
  16. Some remarks on the $\ell$-adic regulator. III

    Izv. RAN. Ser. Mat., 63:6 (1999),  29–82
  17. On formulae for the class number of real Abelian fields

    Izv. RAN. Ser. Mat., 60:4 (1996),  43–110
  18. Some explicit calculations in local and global cyclotomic fields

    Trudy Mat. Inst. Steklov., 208 (1995),  202–223
  19. New explicit formulas for the norm residue symbol, and their applications

    Izv. Akad. Nauk SSSR Ser. Mat., 54:6 (1990),  1196–1228
  20. An analog of the Riemann–Hurwitz formula for one type of $l$-extensions of algebraic number fields

    Izv. Akad. Nauk SSSR Ser. Mat., 54:2 (1990),  316–338
  21. Some remarks on the $l$-adic regulator. II

    Izv. Akad. Nauk SSSR Ser. Mat., 53:4 (1989),  782–813
  22. Algebraic number fields

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 22 (1984),  117–204
  23. Some remarks on the $l$-adic Dirichlet theorem and the $l$-adic regulator

    Izv. Akad. Nauk SSSR Ser. Mat., 45:6 (1981),  1203–1240
  24. Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$ type

    Izv. Akad. Nauk SSSR Ser. Mat., 43:3 (1979),  483–546
  25. Local extensions associated with $l$-extensions with given ramification

    Izv. Akad. Nauk SSSR Ser. Mat., 39:4 (1975),  739–772
  26. Cohomological dimension of some Galois groups

    Izv. Akad. Nauk SSSR Ser. Mat., 39:3 (1975),  487–495
  27. The Tate module for algebraic number fields

    Izv. Akad. Nauk SSSR Ser. Mat., 36:2 (1972),  267–327
  28. Homology of profinite groups, Schur multiplirrs, and class field theory

    Izv. Akad. Nauk SSSR Ser. Mat., 33:6 (1969),  1220–1254

  29. Evgenii Solomonovich Golod (obituary)

    Uspekhi Mat. Nauk, 74:5(449) (2019),  163–169
  30. Evgenii Solomonovich Golod

    Chebyshevskii Sb., 19:2 (2018),  542–545


© Steklov Math. Inst. of RAS, 2024