|
|
Publications in Math-Net.Ru
-
Arithmetic of certain $\ell$-extensions ramified at three places. IV
Izv. RAN. Ser. Mat., 88:2 (2024), 80–95
-
On a family of algebraic number fields with finite 3-class field tower
Mat. Sb., 215:7 (2024), 52–60
-
Arithmetic of certain $\ell$-extensions ramified at three places. III
Izv. RAN. Ser. Mat., 86:6 (2022), 123–142
-
Arithmetic of certain $\ell$-extensions ramified at three places. II
Izv. RAN. Ser. Mat., 85:5 (2021), 132–151
-
Arithmetic of Certain $\ell $-Extensions Ramified at Three Places
Trudy Mat. Inst. Steklova, 307 (2019), 78–99
-
Burnside-type problems in discrete geometry
Diskr. Mat., 30:3 (2018), 68–76
-
Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension
of an algebraic number field
Izv. RAN. Ser. Mat., 82:3 (2018), 90–107
-
On a new type of $\ell$-adic regulator for algebraic number fields. II
Algebra i Analiz, 27:6 (2015), 163–173
-
On a new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)
Izv. RAN. Ser. Mat., 79:1 (2015), 115–152
-
On $\ell$-adic logarithms of Gauss sums
Izv. RAN. Ser. Mat., 78:3 (2014), 111–134
-
The feeble conjecture on the 2-adic regulator for some 2-extensions
Izv. RAN. Ser. Mat., 76:2 (2012), 141–150
-
Some remarks on the $\ell$-adic regulator. V.
Growth of the $\ell$-adic regulator in the cyclotomic $Z_\ell$-extension of an algebraic number field
Izv. RAN. Ser. Mat., 73:5 (2009), 105–170
-
On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields
Fundam. Prikl. Mat., 14:8 (2008), 151–157
-
A property of the $\ell$-adic logarithms of units of
non-abelian local fields
Izv. RAN. Ser. Mat., 70:5 (2006), 97–122
-
Some remarks on the $\ell$-adic regulator. IV
Izv. RAN. Ser. Mat., 64:2 (2000), 43–88
-
Some remarks on the $\ell$-adic regulator. III
Izv. RAN. Ser. Mat., 63:6 (1999), 29–82
-
On formulae for the class number of real Abelian fields
Izv. RAN. Ser. Mat., 60:4 (1996), 43–110
-
Some explicit calculations in local and global cyclotomic fields
Trudy Mat. Inst. Steklov., 208 (1995), 202–223
-
New explicit formulas for the norm residue symbol, and their applications
Izv. Akad. Nauk SSSR Ser. Mat., 54:6 (1990), 1196–1228
-
An analog of the Riemann–Hurwitz formula for one type of $l$-extensions of algebraic number fields
Izv. Akad. Nauk SSSR Ser. Mat., 54:2 (1990), 316–338
-
Some remarks on the $l$-adic regulator. II
Izv. Akad. Nauk SSSR Ser. Mat., 53:4 (1989), 782–813
-
Algebraic number fields
Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 22 (1984), 117–204
-
Some remarks on the $l$-adic Dirichlet theorem and the $l$-adic regulator
Izv. Akad. Nauk SSSR Ser. Mat., 45:6 (1981), 1203–1240
-
Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$ type
Izv. Akad. Nauk SSSR Ser. Mat., 43:3 (1979), 483–546
-
Local extensions associated with $l$-extensions with given ramification
Izv. Akad. Nauk SSSR Ser. Mat., 39:4 (1975), 739–772
-
Cohomological dimension of some Galois groups
Izv. Akad. Nauk SSSR Ser. Mat., 39:3 (1975), 487–495
-
The Tate module for algebraic number fields
Izv. Akad. Nauk SSSR Ser. Mat., 36:2 (1972), 267–327
-
Homology of profinite groups, Schur multiplirrs, and class field theory
Izv. Akad. Nauk SSSR Ser. Mat., 33:6 (1969), 1220–1254
-
Evgenii Solomonovich Golod (obituary)
Uspekhi Mat. Nauk, 74:5(449) (2019), 163–169
-
Evgenii Solomonovich Golod
Chebyshevskii Sb., 19:2 (2018), 542–545
© , 2024