RUS  ENG
Full version
PEOPLE

Krasnov Vyacheslav Alekseevich

Publications in Math-Net.Ru

  1. The real Plücker–Klein map

    Izv. RAN. Ser. Mat., 86:3 (2022),  47–104
  2. The generalized Plücker–Klein map

    Izv. RAN. Ser. Mat., 86:2 (2022),  80–127
  3. Real Segre cubics, Igusa quartics and Kummer quartics

    Izv. RAN. Ser. Mat., 84:3 (2020),  71–118
  4. Real Kummer quartics and their Heisenberg invariance

    Izv. RAN. Ser. Mat., 84:1 (2020),  105–162
  5. Real Kummer surfaces

    Izv. RAN. Ser. Mat., 83:1 (2019),  75–118
  6. On a classical correspondence of real K3 surfaces

    Izv. RAN. Ser. Mat., 82:4 (2018),  18–52
  7. On intersections of two real quadrics

    Izv. RAN. Ser. Mat., 82:1 (2018),  97–150
  8. Real $M$-triquadrics

    Izv. RAN. Ser. Mat., 77:1 (2013),  33–48
  9. Real Four-Dimensional $\mathit{GM}$-Triquadrics

    Mat. Zametki, 93:6 (2013),  844–852
  10. Cohomology of real four-dimensional triquadrics

    Izv. RAN. Ser. Mat., 76:5 (2012),  73–98
  11. Cohomology of real three-dimensional triquadrics

    Izv. RAN. Ser. Mat., 76:1 (2012),  121–148
  12. Real Four-Dimensional $M$-Triquadrics

    Mat. Zametki, 92:6 (2012),  884–892
  13. On the number of components of a three-dimensional maximal intersection of three real quadrics

    Izv. RAN. Ser. Mat., 75:3 (2011),  147–160
  14. Maximal intersections of three real quadrics

    Izv. RAN. Ser. Mat., 75:3 (2011),  127–146
  15. Real four-dimensional biquadrics

    Izv. RAN. Ser. Mat., 75:2 (2011),  151–176
  16. Real Two-Dimensional Intersections of a Quadric by a Cubic

    Mat. Zametki, 90:4 (2011),  530–540
  17. Real $GM$-Biquadrics

    Mat. Zametki, 89:6 (2011),  868–878
  18. Rigid Isotopy Classification of Real Quadric Line Complexes and Associated Kummer Surfaces

    Mat. Zametki, 89:5 (2011),  705–718
  19. On real quadric line complexes

    Izv. RAN. Ser. Mat., 74:6 (2010),  157–182
  20. Real three-dimensional biquadrics

    Izv. RAN. Ser. Mat., 74:4 (2010),  119–144
  21. Topological Classification of Real Three-Dimensional Cubics

    Mat. Zametki, 85:6 (2009),  886–893
  22. On the Fano Variety of a Class of Real Four-Dimensional Cubics

    Mat. Zametki, 85:5 (2009),  711–720
  23. Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics

    Mat. Zametki, 85:4 (2009),  603–615
  24. The Albanese Map of the Fano Surface of a Real $M$-Cubic Threefold

    Mat. Zametki, 84:3 (2008),  381–389
  25. The topological classification of Fano surfaces of real three-dimensional cubics

    Izv. RAN. Ser. Mat., 71:5 (2007),  3–36
  26. Real algebraic varieties and cobordism

    Izv. RAN. Ser. Mat., 71:3 (2007),  141–172
  27. On Bordisms of Real Algebraic $M$-Varieties

    Mat. Zametki, 81:5 (2007),  724–732
  28. Fano Surfaces of Real Quartics

    Mat. Zametki, 81:1 (2007),  83–97
  29. Rigid isotopy classification of real three-dimensional cubics

    Izv. RAN. Ser. Mat., 70:4 (2006),  91–134
  30. The topological type of the Fano surface of a real three-dimensional $M$-cubic

    Izv. RAN. Ser. Mat., 69:6 (2005),  61–94
  31. On the Fano Surface of a Real Cubic $M$-Threefold

    Mat. Zametki, 78:5 (2005),  710–717
  32. On the Algebraic Cohomology of Real Algebraic $M$-Varieties

    Mat. Zametki, 76:6 (2004),  854–867
  33. The Nikulin Congruence for Four-Dimensional $M$-Varieties

    Mat. Zametki, 76:2 (2004),  205–215
  34. The Abel–Jacobi Map for Real Hyperelliptic Surfaces of Genus 3

    Mat. Zametki, 75:5 (2004),  643–651
  35. The Harnack–Thom Inequalities for Sheaves with Involution and Their Applications

    Mat. Zametki, 74:5 (2003),  686–695
  36. Real Algebraically Maximal Varieties

    Mat. Zametki, 73:6 (2003),  853–860
  37. The Brauer and Witt Groups of Real Ruled Surfaces

    Mat. Zametki, 72:5 (2002),  706–714
  38. Analogues of the Harnack–Thom inequality for a real algebraic surface

    Izv. RAN. Ser. Mat., 64:5 (2000),  45–68
  39. The Brauer group of an noncomplete real algebraic surface

    Mat. Zametki, 67:3 (2000),  355–359
  40. On the Picard group and the Brauer group of a real algebraic surface

    Mat. Zametki, 67:2 (2000),  211–220
  41. Real algebraic varieties without real points

    Izv. RAN. Ser. Mat., 63:4 (1999),  131–170
  42. The Bloch–Ogus spectral sequence of a real algebraic variety

    Mat. Zametki, 66:3 (1999),  380–384
  43. On the fundamental homology classes of a real algebraic variety

    Mat. Zametki, 66:2 (1999),  216–219
  44. Albanese homomorphism of the Chow group of 0-cycles of a real algebraic variety

    Mat. Zametki, 65:1 (1999),  76–83
  45. The etale and equivariant cohomology of a real algebraic variety

    Izv. RAN. Ser. Mat., 62:5 (1998),  165–186
  46. Real algebraic GM$\mathbb Z$-surfaces

    Izv. RAN. Ser. Mat., 62:4 (1998),  51–80
  47. Real algebraic GM-varieties

    Izv. RAN. Ser. Mat., 62:3 (1998),  39–66
  48. On theta characteristics of real algebraic curves

    Mat. Zametki, 64:3 (1998),  403–406
  49. Picard and Lefschetz numbers of real algebraic surfaces

    Mat. Zametki, 63:6 (1998),  847–852
  50. On orientable real algebraic $M$-surfaces

    Mat. Zametki, 62:4 (1997),  520–526
  51. The equivariant cohomology groups of a real algebraic surface and their applications

    Izv. RAN. Ser. Mat., 60:6 (1996),  101–126
  52. The cohomological Brauer group of a real algebraic variety

    Izv. RAN. Ser. Mat., 60:5 (1996),  57–88
  53. On the Brauer group of a real algebraic surface

    Mat. Zametki, 60:6 (1996),  935–938
  54. On degeneration of $M$-varieties

    Mat. Zametki, 59:3 (1996),  396–401
  55. On equivariant Grothendieck cohomology of a real algebraic variety, and its applications

    Izv. RAN. Ser. Mat., 58:3 (1994),  36–52
  56. Two-sheeted coverings of real algebraic surfaces

    Mat. Zametki, 56:6 (1994),  137–140
  57. On cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface

    Izv. RAN. Ser. Mat., 57:5 (1993),  210–221
  58. Algebraic cycles on a real algebraic GM-manifold and their applications

    Izv. RAN. Ser. Mat., 57:4 (1993),  153–173
  59. Characteristic classes of vector bundles on a real algebraic variety

    Izv. Akad. Nauk SSSR Ser. Mat., 55:4 (1991),  716–746
  60. On homology classes determined by real points of a real algebraic variety

    Izv. Akad. Nauk SSSR Ser. Mat., 55:2 (1991),  282–302
  61. Degenerations of real algebraic varieties

    Izv. Akad. Nauk SSSR Ser. Mat., 49:4 (1985),  798–827
  62. The Harnack-Thom inequality for a critical point of a polynomial

    Mat. Zametki, 38:5 (1985),  717–720
  63. Albanese map for $GMZ$-varieties

    Mat. Zametki, 35:5 (1984),  739–747
  64. Harnack–Thom inequalities for mappings of real algebraic varieties

    Izv. Akad. Nauk SSSR Ser. Mat., 47:2 (1983),  268–297
  65. Albanese mapping for real algebraic varieites

    Mat. Zametki, 32:3 (1982),  365–374
  66. A generalized Petrovsky inequality for odd-degree curves

    Funktsional. Anal. i Prilozhen., 10:2 (1976),  41–48
  67. The Albanese map for manifolds without meromorphic functions

    Mat. Zametki, 20:2 (1976),  207–214
  68. Transitivity of exceptional subspaces

    Izv. Akad. Nauk SSSR Ser. Mat., 39:1 (1975),  15–22
  69. Compact complex manifolds without meromorphic functions

    Mat. Zametki, 17:1 (1975),  119–122
  70. On the equivalence of imbeddings of complex spaces that can be blown down

    Izv. Akad. Nauk SSSR Ser. Mat., 38:5 (1974),  1012–1036
  71. Formal modifications. Existence theorems for modifications of complex manifolds

    Izv. Akad. Nauk SSSR Ser. Mat., 37:4 (1973),  848–882
  72. Deformations of complex-analytic modifications

    Izv. Akad. Nauk SSSR Ser. Mat., 37:3 (1973),  516–532
  73. Cohomology of complexes of meromorphic forms and residues

    Izv. Akad. Nauk SSSR Ser. Mat., 36:6 (1972),  1237–1268


© Steklov Math. Inst. of RAS, 2025