|
|
Publications in Math-Net.Ru
-
Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
Funktsional. Anal. i Prilozhen., 55:3 (2021), 85–90
-
Essential spectrum of one-dimensional Dirac operators with delta-interactions
Funktsional. Anal. i Prilozhen., 54:2 (2020), 90–94
-
Essential Spectrum of Schrödinger Operators on Periodic Graphs
Funktsional. Anal. i Prilozhen., 52:1 (2018), 80–84
-
Pseudodifferential Operators on Besov Spaces of Variable Smoothness
Mat. Zametki, 104:4 (2018), 571–587
-
Essential Spectrum of Schrödinger Operators
with
$\delta$-Interactions on Unbounded Hypersurfaces
Mat. Zametki, 102:5 (2017), 761–774
-
Acoustic Diffraction Problems on Periodic Graphs
Funktsional. Anal. i Prilozhen., 48:4 (2014), 77–83
-
Singular Integral Operators on Weighted Variable Exponent Lebesgue Spaces on Composed Carleson Curves
Funktsional. Anal. i Prilozhen., 46:1 (2012), 87–92
-
Time-Frequency Integrals and the Stationary Phase Method in Problems of Waves Propagation from Moving Sources
SIGMA, 8 (2012), 096, 21 pp.
-
Exponential estimates for eigenfunctions of matrix elliptic differential operators and limit operators
Dokl. Akad. Nauk, 424:3 (2009), 318–321
-
Essential Spectrum of Difference Operators on Periodic Metric Spaces
Funktsional. Anal. i Prilozhen., 43:2 (2009), 83–87
-
Fredholmness of Pseudodifference Operators in Weighted Spaces
Funktsional. Anal. i Prilozhen., 40:1 (2006), 83–86
-
Stability of the Inverse Operators of Boundary Value Problems in Smooth Expanding Domains
Funktsional. Anal. i Prilozhen., 35:4 (2001), 85–87
-
Algebras of Singular Integral Operators on Composed Contours with Whirl Points
Funktsional. Anal. i Prilozhen., 30:3 (1996), 85–87
-
Algebras of singular integral operators on compound contours with nodes that are logarithmic whirl points
Izv. RAN. Ser. Mat., 60:6 (1996), 169–200
-
Singular integral operators on complicated contours and pseudodifferential operators
Mat. Zametki, 58:1 (1995), 67–85
-
A criterion for the local invertibility of Mellin
pseudodifferential operators with operator symbols, and some of its
applications
Dokl. Akad. Nauk, 333:2 (1993), 147–150
-
The Fredholm property of general boundary value problems on
noncompact manifolds, and limit operators
Dokl. Akad. Nauk, 325:2 (1992), 237–241
-
Discrete operator convolutions and some of their applications
Mat. Zametki, 51:5 (1992), 90–101
-
Singular integral operators on a composite contour with an
oscillating tangent, and pseudodifferential Mellin operators
Dokl. Akad. Nauk SSSR, 321:4 (1991), 692–696
-
Spectral properties of a class of difference operators
Dokl. Akad. Nauk SSSR, 320:1 (1991), 45–48
-
On the solvability of problems of acoustics of open waveguides
Differ. Uravn., 26:12 (1990), 2178–2180
-
The far field of narrow-band sound source that moves in a
waveguide
Dokl. Akad. Nauk SSSR, 304:5 (1989), 1123–1127
-
The Fredholm property of pseudodifferential operators on $\mathbf{R}^n$ in the scale of spaces $L_{2,p}$
Sibirsk. Mat. Zh., 29:4 (1988), 149–161
-
Systems of integral-difference equations in a half-space
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 1, 63–66
-
Pseudodifferential operators on $\mathbf R^n$ and limit operators
Mat. Sb. (N.S.), 129(171):2 (1986), 175–185
-
Criterion for Noethericity of pseudodifferential operators on $\mathbf{R}^n$ with symbols of class $C^\infty_b(\mathbf{R}^n\times\mathbf{R}^n)$
Dokl. Akad. Nauk SSSR, 285:6 (1985), 1317–1320
-
Noethericity of multidimensional operators of convolution type with measurable bounded coefficients
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 6, 22–30
-
Noether property for multidimensional discrete Convolution operators
Mat. Zametki, 37:3 (1985), 407–421
-
The Cauchy problem for parabolic differential-difference operators with variable coefficients
Differ. Uravn., 19:6 (1983), 1032–1039
-
On the algebra generated by pseudodifferential operators on $\mathbf{R}^n$. Operators of multiplication by almost-periodic functions, and shift operators
Dokl. Akad. Nauk SSSR, 263:5 (1982), 1066–1070
-
Differential-difference equations in a half space
Differ. Uravn., 16:11 (1980), 2030–2038
-
Noetherian character of pseudodifferential operators with symbols of class $S^m_{\rho,\delta}$ $(0\leqslant\delta=\rho<1)$
Mat. Zametki, 27:3 (1980), 457–467
-
Exponential decrease at infinity of the solutions of multidimensional equations of convolution type in cones
Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 3, 38–44
-
On the solvability of differential-difference equations on $\mathbf{R}^n$ and in a half-space
Dokl. Akad. Nauk SSSR, 243:5 (1978), 1134–1137
-
Pseudodifferential operators in spaces of distributions with exponential behavior at infinity
Funktsional. Anal. i Prilozhen., 12:1 (1978), 79
-
Boundary value problems for a class of differential operators in domains with conical points
Differ. Uravn., 13:9 (1977), 1727–1729
-
Many-dimensional operators of convolution type in spaces of weight-integrable functions
Mat. Zametki, 16:2 (1974), 267–276
-
A priori estimates and the Fredholm property for a class of pseudodifferential operators
Mat. Sb. (N.S.), 92(134):2(10) (1973), 195–208
-
Discrete analogues of boundary value problems
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 11, 32–38
-
The Cauchy problem for parabolic pseudodifferential equations with nonstabilizing symbol
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 7, 85–94
-
Pseudodifferential operators on a class of noncompact manifolds
Mat. Sb. (N.S.), 89(131):1(9) (1972), 46–60
-
Quasi-elliptic pseudodifferential operators and the Cauchy problem for parabolic equations
Dokl. Akad. Nauk SSSR, 201:5 (1971), 1055–1058
-
Pseudodifferential equations in unbounded regions
Dokl. Akad. Nauk SSSR, 197:2 (1971), 284–287
-
A multidimensional equation of convolution type whose symbol has singularities of the form of a complex power function of a linearly homogeneous cone
Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 8, 64–74
-
Pseudodifferential equations in unbounded regions with conical structure at infinity
Mat. Sb. (N.S.), 80(122):1(9) (1969), 77–96
-
Certain estimates for translation-invariant operators in $L_p$-spaces with weight
Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 10, 72–80
-
Stefan Grigorievich Samko (on the occasion of his 80th birthday)
Vladikavkaz. Mat. Zh., 23:3 (2021), 126–129
© , 2024