RUS  ENG
Full version
PEOPLE

Dem'yanenko Vadim Andreevich

Publications in Math-Net.Ru

  1. On the structure of elliptic fields. II

    Izv. RAN. Ser. Mat., 62:1 (1998),  3–20
  2. Sharp estimates of torsion of elliptic curves

    Mat. Zametki, 63:4 (1998),  503–508
  3. On Mazur's conjecture

    Mat. Zametki, 63:2 (1998),  294–296
  4. Torsion of elliptic curves over cyclotomic fields

    Algebra i Analiz, 9:5 (1997),  51–64
  5. Elliptic functions and the fermat curve

    Mat. Zametki, 60:4 (1996),  606–608
  6. On the torsion of elliptic curves

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  48–52
  7. On the number of the integral points of elliptic curves

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  31–35
  8. Elliptic functions and Fermat's equation

    Mat. Sb., 183:9 (1992),  15–28
  9. Obvious description of isogeny of elliptic cur

    Trudy Inst. Mat. i Mekh. UrO RAN, 1 (1992),  13–19
  10. Estimate for the remainder in the Tate formula

    Mat. Zametki, 50:5 (1991),  149–151
  11. Representation of numbers by a binary cubic form

    Mat. Zametki, 44:1 (1988),  55–63
  12. On explicit estimates for torsion orders of the points of curves of genus 1

    Zap. Nauchn. Sem. LOMI, 151 (1986),  57–65
  13. On the Abel relations

    Zap. Nauchn. Sem. LOMI, 151 (1986),  54–56
  14. On the structure of elliptic fields. I

    Izv. Akad. Nauk SSSR Ser. Mat., 49:4 (1985),  719–730
  15. A property of torsion points

    Mat. Zametki, 37:4 (1985),  474–477
  16. Division of elliptic functions

    Mat. Zametki, 37:1 (1985),  99–102
  17. Differents of points of torsion

    Mat. Zametki, 33:1 (1983),  111–116
  18. On Abel's identities

    Zap. Nauchn. Sem. LOMI, 121 (1983),  58–61
  19. On the orders of torsion points of elliptic curves

    Zap. Nauchn. Sem. LOMI, 121 (1983),  47–57
  20. Recurrence relations for the coefficients of a modular curve

    Mat. Zametki, 30:1 (1981),  13–19
  21. On one property of elliptic curves

    Zap. Nauchn. Sem. LOMI, 106 (1981),  70–75
  22. On explicit estimations of orders of the torsion of the points of curves of genus 1

    Zap. Nauchn. Sem. LOMI, 93 (1980),  142–158
  23. Orders of the torsion of points of curves of genus 1

    Zap. Nauchn. Sem. LOMI, 82 (1979),  5–28
  24. On exact bounds of the $p$ torsion of some curves of the first type

    Mat. Zametki, 21:1 (1977),  3–7
  25. An indeterminate equation

    Zap. Nauchn. Sem. LOMI, 67 (1977),  163–166
  26. The conjecture of A. Mąkowski

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 10,  29–31
  27. On a conjecture of A. Schinzel

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 8,  39–45
  28. Rational points of algebraic curves

    Mat. Zametki, 18:6 (1975),  903–908
  29. On Mordell's conjecture

    Izv. Akad. Nauk SSSR Ser. Mat., 38:6 (1974),  1193–1201
  30. On Tate height and the representation of numbers by binary forms

    Izv. Akad. Nauk SSSR Ser. Mat., 38:3 (1974),  459–470
  31. The Tate height

    Dokl. Akad. Nauk SSSR, 212:5 (1973),  1043–1045
  32. Local factorization of the coordinates of torsion points

    Mat. Zametki, 14:6 (1973),  827–832
  33. On the uniform boundedness of the torsion of elliptic curves over algebraic number fields

    Trudy Mat. Inst. Steklov., 132 (1973),  82–87
  34. On the uniform boundedness of the torsion of elliptic curves over algebraic number fields

    Izv. Akad. Nauk SSSR Ser. Mat., 36:3 (1972),  484–496
  35. Bounded torsion of elliptic curves

    Mat. Zametki, 12:1 (1972),  53–58
  36. Torsion of elliptic curves

    Izv. Akad. Nauk SSSR Ser. Mat., 35:2 (1971),  280–307
  37. Representation of numbers by irreducible binary cubic forms

    Mat. Zametki, 10:1 (1971),  69–71
  38. On torsion points of elliptic curves

    Izv. Akad. Nauk SSSR Ser. Mat., 34:4 (1970),  757–774
  39. On points of finite order on elliptic curves

    Mat. Zametki, 7:5 (1970),  563–567
  40. On the representation of numbers by a binary cubical irreducible form

    Mat. Zametki, 7:1 (1970),  87–96
  41. On the representation of numbers by binary biquadratic forms

    Mat. Sb. (N.S.), 80(122):3(11) (1969),  445–452
  42. The indeterminate equations $x^6+y^6=az^2$, $x^6+y^6=az^3$, $x^4+y^4=az^4$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 4,  26–32
  43. L. Euler's hypothesis

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 3,  37–42
  44. Estimate of the remainder term in Tate's formula

    Mat. Zametki, 3:3 (1968),  271–278
  45. Points of finite order on elliptic curves

    Izv. Akad. Nauk SSSR Ser. Mat., 31:6 (1967),  1327–1340
  46. Rational points of a class of algebraic curves

    Dokl. Akad. Nauk SSSR, 171:6 (1966),  1259–1260
  47. Rational points of a class of algebraic curves

    Izv. Akad. Nauk SSSR Ser. Mat., 30:6 (1966),  1373–1396
  48. Sums of four cubes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 5,  64–69
  49. Об уравнении $x^3+y^3+z^3-t^3=1$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 5,  57
  50. On Yeśmanowicz' problem for Pythagorean numbers

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 5,  52–56

  51. Letter to the editor

    Mat. Zametki, 38:6 (1985),  944


© Steklov Math. Inst. of RAS, 2025