|
|
Publications in Math-Net.Ru
-
On the structure of elliptic fields. II
Izv. RAN. Ser. Mat., 62:1 (1998), 3–20
-
Sharp estimates of torsion of elliptic curves
Mat. Zametki, 63:4 (1998), 503–508
-
On Mazur's conjecture
Mat. Zametki, 63:2 (1998), 294–296
-
Torsion of elliptic curves over cyclotomic fields
Algebra i Analiz, 9:5 (1997), 51–64
-
Elliptic functions and the fermat curve
Mat. Zametki, 60:4 (1996), 606–608
-
On the torsion of elliptic curves
Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996), 48–52
-
On the number of the integral points of elliptic curves
Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995), 31–35
-
Elliptic functions and Fermat's equation
Mat. Sb., 183:9 (1992), 15–28
-
Obvious description of isogeny of elliptic cur
Trudy Inst. Mat. i Mekh. UrO RAN, 1 (1992), 13–19
-
Estimate for the remainder in the Tate formula
Mat. Zametki, 50:5 (1991), 149–151
-
Representation of numbers by a binary cubic form
Mat. Zametki, 44:1 (1988), 55–63
-
On explicit estimates for torsion orders of the points of curves of genus 1
Zap. Nauchn. Sem. LOMI, 151 (1986), 57–65
-
On the Abel relations
Zap. Nauchn. Sem. LOMI, 151 (1986), 54–56
-
On the structure of elliptic fields. I
Izv. Akad. Nauk SSSR Ser. Mat., 49:4 (1985), 719–730
-
A property of torsion points
Mat. Zametki, 37:4 (1985), 474–477
-
Division of elliptic functions
Mat. Zametki, 37:1 (1985), 99–102
-
Differents of points of torsion
Mat. Zametki, 33:1 (1983), 111–116
-
On Abel's identities
Zap. Nauchn. Sem. LOMI, 121 (1983), 58–61
-
On the orders of torsion points of elliptic curves
Zap. Nauchn. Sem. LOMI, 121 (1983), 47–57
-
Recurrence relations for the coefficients of a modular curve
Mat. Zametki, 30:1 (1981), 13–19
-
On one property of elliptic curves
Zap. Nauchn. Sem. LOMI, 106 (1981), 70–75
-
On explicit estimations of orders of the torsion of the points of curves of genus 1
Zap. Nauchn. Sem. LOMI, 93 (1980), 142–158
-
Orders of the torsion of points of curves of genus 1
Zap. Nauchn. Sem. LOMI, 82 (1979), 5–28
-
On exact bounds of the $p$ torsion of some curves of the first type
Mat. Zametki, 21:1 (1977), 3–7
-
An indeterminate equation
Zap. Nauchn. Sem. LOMI, 67 (1977), 163–166
-
The conjecture of A. Mąkowski
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 10, 29–31
-
On a conjecture of A. Schinzel
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 8, 39–45
-
Rational points of algebraic curves
Mat. Zametki, 18:6 (1975), 903–908
-
On Mordell's conjecture
Izv. Akad. Nauk SSSR Ser. Mat., 38:6 (1974), 1193–1201
-
On Tate height and the representation of numbers by binary forms
Izv. Akad. Nauk SSSR Ser. Mat., 38:3 (1974), 459–470
-
The Tate height
Dokl. Akad. Nauk SSSR, 212:5 (1973), 1043–1045
-
Local factorization of the coordinates of torsion points
Mat. Zametki, 14:6 (1973), 827–832
-
On the uniform boundedness of the torsion of elliptic curves over algebraic number fields
Trudy Mat. Inst. Steklov., 132 (1973), 82–87
-
On the uniform boundedness of the torsion of elliptic curves over algebraic number fields
Izv. Akad. Nauk SSSR Ser. Mat., 36:3 (1972), 484–496
-
Bounded torsion of elliptic curves
Mat. Zametki, 12:1 (1972), 53–58
-
Torsion of elliptic curves
Izv. Akad. Nauk SSSR Ser. Mat., 35:2 (1971), 280–307
-
Representation of numbers by irreducible binary cubic forms
Mat. Zametki, 10:1 (1971), 69–71
-
On torsion points of elliptic curves
Izv. Akad. Nauk SSSR Ser. Mat., 34:4 (1970), 757–774
-
On points of finite order on elliptic curves
Mat. Zametki, 7:5 (1970), 563–567
-
On the representation of numbers by a binary cubical irreducible form
Mat. Zametki, 7:1 (1970), 87–96
-
On the representation of numbers by binary biquadratic forms
Mat. Sb. (N.S.), 80(122):3(11) (1969), 445–452
-
The indeterminate equations $x^6+y^6=az^2$, $x^6+y^6=az^3$, $x^4+y^4=az^4$
Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 4, 26–32
-
L. Euler's hypothesis
Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 3, 37–42
-
Estimate of the remainder term in Tate's formula
Mat. Zametki, 3:3 (1968), 271–278
-
Points of finite order on elliptic curves
Izv. Akad. Nauk SSSR Ser. Mat., 31:6 (1967), 1327–1340
-
Rational points of a class of algebraic curves
Dokl. Akad. Nauk SSSR, 171:6 (1966), 1259–1260
-
Rational points of a class of algebraic curves
Izv. Akad. Nauk SSSR Ser. Mat., 30:6 (1966), 1373–1396
-
Sums of four cubes
Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 5, 64–69
-
Об уравнении $x^3+y^3+z^3-t^3=1$
Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 5, 57
-
On Yeśmanowicz' problem for Pythagorean numbers
Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 5, 52–56
-
Letter to the editor
Mat. Zametki, 38:6 (1985), 944
© , 2025