RUS  ENG
Full version
PEOPLE

Shevaldin Valerii Trifonovich

Publications in Math-Net.Ru

  1. Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients

    Chebyshevskii Sb., 25:2 (2024),  243–250
  2. Yu. N. Subbotin's Method in the Problem of Extremal Interpolation in the Mean in the Space $L_p(\mathbb R)$ with Overlapping Averaging Intervals

    Mat. Zametki, 115:6 (2024),  919–934
  3. Extremal Interpolation in the Mean in the Space $L_1(\mathbb R)$ with Overlapping Averaging Intervals

    Mat. Zametki, 115:1 (2024),  123–136
  4. Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator

    Mat. Zametki, 113:3 (2023),  453–460
  5. Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  219–232
  6. On Favard local parabolic interpolating splines with additional knots

    Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023),  979–986
  7. Extremal interpolation with the least value of the norm of the second derivative in $L_p(\mathbb R)$

    Izv. RAN. Ser. Mat., 86:1 (2022),  219–236
  8. Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis

    Mat. Sb., 213:4 (2022),  123–144
  9. On Yu. N. Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  237–249
  10. Subbotin's splines in the problem of extremal interpolation in the space $L_p$ for second-order linear differential operators

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  255–262
  11. Local approximation by parabolic splines in the mean with large averaging intervals

    Mat. Zametki, 108:5 (2020),  771–781
  12. Extremal interpolation on the semiaxis with the smallest norm of the third derivative

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  210–223
  13. On the connection between the second divided difference and the second derivative

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  216–224
  14. Algorithms for the construction of third-order local exponential splines with equidistant knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  279–287
  15. A Method for the Construction of Local Parabolic Splines with Additional Knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  205–219
  16. Extremal functional interpolation and splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  200–225
  17. On integral Lebesgue constants of local splines with uniform knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  290–297
  18. The Lebesgue constant of local cubic splines with equally-spaced knots

    Sib. Zh. Vychisl. Mat., 20:4 (2017),  445–451
  19. Uniform Lebesgue constants of local spline approximation

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  292–299
  20. Calibration relations for analogues of the basis splines with uniform nodes

    Ural Math. J., 3:1 (2017),  76–80
  21. A method for the construction of analogs of wavelets by means of trigonometric $B$-splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  320–327
  22. On uniform Lebesgue constants of third-order local trigonometric splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  245–254
  23. Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  309–315
  24. On uniform Lebesgue constants of local exponential splines with equidistant knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  261–272
  25. Two-scale relations for $B$-$\mathcal L$-splines with uniform knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  234–243
  26. On Lebesgue constants of local parabolic splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  213–219
  27. Local exponential splines with arbitrary knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  258–263
  28. Shape preserving conditions for quadratic spline interpolation in the sense of Subbotin and Marsden

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  145–152
  29. Orders of approximation by local exponential splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  135–144
  30. Local approximation by splines with displacement of nodes

    Mat. Tr., 14:2 (2011),  73–82
  31. Two-scale relations for analogs of basis splines of small degrees

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  319–323
  32. Form preservation under approximation by local exponential splines of an arbitrary order

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  291–299
  33. Shape-Preserving Interpolation by Cubic Splines

    Mat. Zametki, 88:6 (2010),  836–844
  34. Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  272–280
  35. Approximation by third-order local $\mathcal L$-splines with uniform nodes

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  156–165
  36. Approximation by local $L$-splines corresponding to a linear differential operator of the second order

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006),  195–213
  37. Approximation by local trigonometric splines

    Mat. Zametki, 77:3 (2005),  354–363
  38. Approximation by local parabolic splines with arbitrary knots

    Sib. Zh. Vychisl. Mat., 8:1 (2005),  77–88
  39. The Jackson–Stechkin inequality in the space $C(\mathbb T)$ with trigonometric continuity modulus annihilating the first harmonics

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001),  231–237
  40. A problem of extremal interpolation for multivariate functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001),  144–159
  41. The Jackson–Stechkin inequality in $L^2$ with a trigonometric modulus of continuity

    Mat. Zametki, 65:6 (1999),  928–932
  42. Extremal interpolation in the mean with overlapping averaging intervals and $L$-splines

    Izv. RAN. Ser. Mat., 62:4 (1998),  201–224
  43. Lower estimates of the widths of the classes of functions defined by a modulus of continuity

    Izv. RAN. Ser. Mat., 58:5 (1994),  172–188
  44. Interpolating periodic splines and widths of classes of functions with a bounded noninteger derivative

    Dokl. Akad. Nauk, 328:3 (1993),  296–298
  45. Lower bounds for the widths of classes of periodic functions with a bounded fractional derivative

    Mat. Zametki, 53:2 (1993),  145–151
  46. Widths of classes of convolutions with Poisson kernel

    Mat. Zametki, 51:6 (1992),  126–136
  47. Lower estimations of widths some classes of periodic functions

    Trudy Mat. Inst. Steklov., 198 (1992),  242–267
  48. Lower bounds on widths of classes of sourcewise representable functions

    Trudy Mat. Inst. Steklov., 189 (1989),  185–200
  49. $\mathscr L$-Splines and widths

    Mat. Zametki, 33:5 (1983),  735–744
  50. Some problems of extremal interpolation in the mean for linear differential operators

    Trudy Mat. Inst. Steklov., 164 (1983),  203–240
  51. Some problems of extremal interpolation in the mean

    Dokl. Akad. Nauk SSSR, 267:4 (1982),  803–805
  52. A problem of extremal interpolation

    Mat. Zametki, 29:4 (1981),  603–622
  53. Extremal interpolation with least norm of linear differential operator

    Mat. Zametki, 27:5 (1980),  721–740

  54. Yurii Nikolaevich Subbotin (A Tribute to His Memory)

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  9–16
  55. Yurii Nikolaevich Subbotin (on his 70th birthday)

    Uspekhi Mat. Nauk, 62:2(374) (2007),  187–190


© Steklov Math. Inst. of RAS, 2024