RUS  ENG
Full version
PEOPLE

Dolzhenko Evgenii Prokof'evich

Publications in Math-Net.Ru

  1. Boundary behavior of derivatives of conformal mappings of simply connected domains

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 5,  29–35
  2. The Behavior of Conformal Maps of Domains Near Convex Boundary Arcs

    Mat. Zametki, 90:4 (2011),  501–516
  3. Bounds for the moduli of continuity for conformal mappings of domains near their accessible boundary arcs

    Mat. Sb., 202:12 (2011),  57–106
  4. On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients

    Trudy Mat. Inst. Steklova, 236 (2002),  153–157
  5. On the Boundary Properties of Solutions to the Generalized Cauchy–Riemann Equation

    Trudy Mat. Inst. Steklova, 236 (2002),  142–152
  6. Approximations with a sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations

    Izv. RAN. Ser. Mat., 63:3 (1999),  77–118
  7. On conformal mappings of Jordan domains

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 4,  66–68
  8. Approximations with a sign-sensitive weight: existence and uniqueness theorems

    Izv. RAN. Ser. Mat., 62:6 (1998),  59–102
  9. On boundary properties of the components of polyharmonic functions

    Mat. Zametki, 63:6 (1998),  821–834
  10. On boundary behavior of solutions of the generalized Cauchy–Riemann equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 3,  16–25
  11. Some remarks on the modulus of continuity of a conformal mapping of the disk onto a Jordan domain

    Mat. Zametki, 60:2 (1996),  176–184
  12. On the boundary behavior of the components of a polyanalytic function

    Dokl. Akad. Nauk, 338:5 (1994),  585–588
  13. Metric spaces of semicontinuous functions

    Mat. Zametki, 55:3 (1994),  48–58
  14. On the definition of Chebyshev snakes

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 3,  49–59
  15. Sign-sensitive approximations. Problems of uniqueness and stability

    Dokl. Akad. Nauk, 333:1 (1993),  5–7
  16. Sign-sensitive approximations. A space of sign-sensitive weights. Rigidity and freedom of a system

    Dokl. Akad. Nauk, 332:6 (1993),  686–689
  17. The work of D. E. Men'shov in the theory of analytic functions and the present state of the theory of monogeneity

    Uspekhi Mat. Nauk, 47:5(287) (1992),  67–96
  18. D. E. Men'shov and the current state of monogeneity theory

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 4,  24–36
  19. Mapping of sets of finite $\alpha$-measure by rational functions

    Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987),  1309–1321
  20. Mapping sets of locally finite length by a rational function

    Trudy Mat. Inst. Steklov., 180 (1987),  105–107
  21. N. N. Luzin and the theory of boundary properties of analytic functions

    Uspekhi Mat. Nauk, 40:3(243) (1985),  71–84
  22. Boundary-value uniqueness theorems for analytic functions

    Mat. Zametki, 25:6 (1979),  845–855
  23. On the dependence of properties of functions on their degree of approximation by polynomials

    Izv. Akad. Nauk SSSR Ser. Mat., 42:2 (1978),  270–304
  24. Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions

    Izv. Akad. Nauk SSSR Ser. Mat., 41:1 (1977),  182–202
  25. On the dependence of the boundary properties of an analytic function on the rapidity of its approximation by rational functions

    Mat. Sb. (N.S.), 103(145):1(5) (1977),  131–142
  26. On the differentiability of functions that can be approximated sufficiently well in the Hausdorff or uniform metric

    Dokl. Akad. Nauk SSSR, 230:4 (1976),  765–768
  27. On approximations of functions in the Hausdorff metric

    Dokl. Akad. Nauk SSSR, 226:4 (1976),  768–770
  28. Approximations of functions in the Hausdorff metric by piecewise monotonic (in particular, rational) functions

    Mat. Sb. (N.S.), 101(143):4(12) (1976),  508–541
  29. Approximation by rational functions in integral metrics and differentiability in the mean

    Mat. Zametki, 16:5 (1974),  801–811
  30. Boundary properties of arbitrary functions

    Izv. Akad. Nauk SSSR Ser. Mat., 31:1 (1967),  3–14
  31. A comparison of rates of rational and polynomial approximation

    Mat. Zametki, 1:3 (1967),  313–320
  32. Uniform approximations by rational functions (algebraic and trigonometric) and global functional properties

    Dokl. Akad. Nauk SSSR, 166:3 (1966),  526–529
  33. Behavior of the Fourier series of a continuous function depending on the rapidity of its approximation by rational functions (algebraic or trigonometric)

    Mat. Sb. (N.S.), 71(113):1 (1966),  43–47
  34. Rational approximations and boundary properties of analytic functions

    Mat. Sb. (N.S.), 69(111):4 (1966),  497–524
  35. The smoothness of harmonic and analytic functions at the boundary points of a region

    Izv. Akad. Nauk SSSR Ser. Mat., 29:5 (1965),  1069–1084
  36. On the singularities of continuous harmonic functions

    Izv. Akad. Nauk SSSR Ser. Mat., 28:6 (1964),  1251–1270
  37. On the representation of continuous harmonic functions in the form of potentials

    Izv. Akad. Nauk SSSR Ser. Mat., 28:5 (1964),  1113–1130
  38. Some metric properties of algebraic hypersurfaces

    Izv. Akad. Nauk SSSR Ser. Mat., 27:2 (1963),  241–252
  39. Bounds for derivatives of rational functions

    Izv. Akad. Nauk SSSR Ser. Mat., 27:1 (1963),  9–28
  40. The removability of singularities of analytic functions

    Uspekhi Mat. Nauk, 18:4(112) (1963),  135–142
  41. On approximation on closed regions and on null-sets

    Dokl. Akad. Nauk SSSR, 143:4 (1962),  771–774
  42. Properties of functions of several variables which can be sufficiently closely approximated by rational functions

    Izv. Akad. Nauk SSSR Ser. Mat., 26:5 (1962),  641–652
  43. On the derivative numbers of complex functions

    Izv. Akad. Nauk SSSR Ser. Mat., 26:3 (1962),  347–360
  44. The rate of approximation by rational fractions and the properties of the functions

    Mat. Sb. (N.S.), 56(98):4 (1962),  403–432
  45. Some estimates concerning algebraic hypersurfaces and derivatives of rational functions

    Dokl. Akad. Nauk SSSR, 139:6 (1961),  1287–1290
  46. Differentiation of complex functions

    Dokl. Akad. Nauk SSSR, 130:1 (1960),  17–20

  47. Anatolii Georgievich Vitushkin (on his 70th birthday)

    Uspekhi Mat. Nauk, 57:1(343) (2002),  179–184
  48. Evgenii Mikhailovich Nikishin (on the fiftieth anniversary of his birth)

    Uspekhi Mat. Nauk, 51:2(308) (1996),  181–182
  49. Dmitrii Evgen'evich Men'shov (on the 100th anniversary of his birth)

    Uspekhi Mat. Nauk, 47:5(287) (1992),  5–14
  50. Dmitriĭ Evgen'evich Men'shov (on the centenary of his birth)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 4,  3–8
  51. Dmitrii Evgen'evich Men'shov (obituary)

    Uspekhi Mat. Nauk, 44:5(269) (1989),  149–151
  52. Aleksei Fedorovich Leont'ev

    Mat. Zametki, 42:4 (1987),  483–493


© Steklov Math. Inst. of RAS, 2025