RUS  ENG
Full version
PEOPLE

Matveev Aleksei Serafimovich

Publications in Math-Net.Ru

  1. A historical essay on the scientific school of V.A. Yakubovich

    Avtomat. i Telemekh., 2023, no. 9,  3–36
  2. An overview of works of the scientific school created by V. A. Yakubovich on the issues of artificial intelligence and robotics

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10:4 (2023),  665–685
  3. Tsypkin and Jury–Lee criteria for synchronization and stability of discrete-time multiagent systems

    Avtomat. i Telemekh., 2018, no. 6,  119–139
  4. Control and estimation under information constraints: toward a unified theory of control, computation and communications

    Avtomat. i Telemekh., 2010, no. 4,  34–99
  5. Theory of optimal control in the works of V. A. Yakubovich

    Avtomat. i Telemekh., 2006, no. 10,  120–174
  6. On the convexity of the images of quadratic mappings

    Algebra i Analiz, 10:2 (1998),  159–196
  7. Non-traditional conditions for the existence of an optimal control for the Goursat–Darboux equations

    Izv. RAN. Ser. Mat., 62:5 (1998),  79–102
  8. Nonconvex global optimization problems in control theory

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 60 (1998),  128–175
  9. The Frequency Theorem (Kalman–Yakubovich Lemma) in Control Theory

    Avtomat. i Telemekh., 1996, no. 10,  3–40
  10. Lagrangian duality in nonconvex optimization, and modifications of the Toeplitz–Hausdorff theorem

    Dokl. Akad. Nauk, 351:1 (1996),  19–23
  11. Lagrange duality in nonconvex optimization theory and modifications of the Toeplitz–Hausdorff theorem

    Algebra i Analiz, 7:5 (1995),  143–181
  12. Nonconvex problems of global optimization

    Algebra i Analiz, 4:6 (1992),  189–219
  13. On the nonequivalence of the pointwise and integral maximum principle for systems with delays in the controls

    Algebra i Analiz, 4:4 (1992),  143–173
  14. Variational analysis in problems of the optimization of systems with distributed parameters, and vector-valued set functions

    Sibirsk. Mat. Zh., 31:6 (1990),  127–141
  15. Optimal control problems with delays of general form and with phase constraints

    Izv. Akad. Nauk SSSR Ser. Mat., 52:6 (1988),  1200–1229
  16. On the abstract theory of the optimal control of systems with distributed parameters

    Sibirsk. Mat. Zh., 29:1 (1988),  94–107
  17. On the necessary conditions for an extremum in an optimal control problem with phase constraints

    Differ. Uravn., 23:4 (1987),  629–640
  18. Optimal control of certain systems with distributed parameters

    Sibirsk. Mat. Zh., 19:5 (1978),  1109–1140


© Steklov Math. Inst. of RAS, 2025