RUS  ENG
Full version
PEOPLE

Chernykh Nikolai Ivanovich

Publications in Math-Net.Ru

  1. Reconstruction of a Function Analytic in a Disk from the Boundary Values of Its Real Part Using Interpolation Wavelets

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  287–293
  2. Periodic wavelets on a multidimensional sphere and their application for function approximation

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  255–267
  3. A Numerical Method for Boundary Value Problems for a Homogeneous Equation with the Squared Laplace Operator with the Use of Interpolating Wavelets

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  198–204
  4. Interpolating wavelets on the sphere

    Ural Math. J., 5:2 (2019),  3–12
  5. Harmonic Interpolating Wavelets in a Ring

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  225–234
  6. Uniform approximation of the curvature of smooth planar curves with the use of partial sums of Fourier series

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  253–256
  7. New method of reflector surface shaping to produce a prescribed contour beam

    Ural Math. J., 3:2 (2017),  143–151
  8. A new algorithm for analysis of experimental Mössbauer spectra

    Ural Math. J., 3:2 (2017),  33–39
  9. Interpolation wavelets in boundary value problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  257–268
  10. A solution class of the Euler equation in a torus with solenoidal velocity field. III

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  91–100
  11. A solution class of the Euler equation in a torus with solenoidal velocity field. II

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  102–108
  12. A solution class of the Euler equation in a torus with solenoidal velocity field

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  60–70
  13. Construction of orthogonal multiwavelet bases

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  221–230
  14. Description of a helical motion of an incompressible nonviscous fluid

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  43–51
  15. Some solutions of continuum equations for an incompressible viscous fluid

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  48–63
  16. On the mechanics of helical flows in an ideal incompressible viscous continuous medium

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  120–134
  17. Synthesis of electromagnetic field on an antenna array, I

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  104–109
  18. Statement and solution of a boundary value problem in the class of planar-helical vector fields

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  123–138
  19. Exposition of the lectures by S. B. Stechkin on approximation theory

    Eurasian Math. J., 2:4 (2011),  5–155
  20. The Poisson problem in a domain with a cut

    Mat. Tr., 14:2 (2011),  189–205
  21. Calculation of the form of the antenna reflector generating the principal ray of given geometrical configuration

    Avtomat. i Telemekh., 2010, no. 3,  34–45
  22. Harmonic wavelets in boundary value problems for harmonic and biharmonic functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  281–296
  23. The class of solenoidal planar-helical vector fields

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  128–143
  24. On the construction of potential and transverse vortex vector fields with lines of zero curvature

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  117–127
  25. Solution of a first-kind convolution integral equation with a special kernel and a right-hand side

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  74–78
  26. The full class ofsmooth axially symmetric longitudinal-vortex unit vector fields

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(1) (2009),  11–23
  27. The Dirichlet problem in a domain with a slit

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:1 (2009),  208–221
  28. Transformation that changes the geometric structure of a vector field

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:1 (2009),  111–121
  29. Interpolating-orthogonal wavelet systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008),  153–161
  30. Longitudinal-vortex unit vector fields from the class of axially symmetric fields

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008),  92–98
  31. On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008),  82–91
  32. Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics

    Trudy Inst. Mat. i Mekh. UrO RAN, 11:2 (2005),  131–167
  33. Harmonic wavelets and asymptotics of Dirichlet problem solution in circle with small perforation

    Mat. Model., 14:5 (2002),  17–30
  34. Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001),  217–230
  35. Wavelets in spaces of harmonic functions

    Izv. RAN. Ser. Mat., 64:1 (2000),  145–174
  36. The Jackson–Stechkin inequality in $L^2$ with a trigonometric modulus of continuity

    Mat. Zametki, 65:6 (1999),  928–932
  37. Wavelets Bases in Spaces of Analytic Functions

    Trudy Mat. Inst. Steklova, 219 (1997),  340–355
  38. Exzact Jackson inequality in $L_p(0,2\pi)$ $(1\le p<2)$

    Trudy Mat. Inst. Steklov., 198 (1992),  232–241
  39. Approximation of classes of differentiable functions by splines in weighted spaces

    Trudy Mat. Inst. Steklov., 145 (1980),  169–247
  40. Approximation by splines with a given density of distribution of the nodes

    Trudy Mat. Inst. Steklov., 138 (1975),  174–197
  41. Approximation of analytic functions by trigonometric polynomials on an interval that is smaller than the period

    Trudy Mat. Inst. Steklov., 109 (1971),  98–117
  42. Order of the best spline approximations of some classes of functions

    Mat. Zametki, 7:1 (1970),  31–42
  43. On the behaviour of the partial sums of trigonometric Fourier series

    Uspekhi Mat. Nauk, 23:6(144) (1968),  3–50
  44. The best approximation of periodic functions by trigonometric polynomials in $L^2$

    Mat. Zametki, 2:5 (1967),  513–522
  45. The approximation of functions by polynomials with constraints

    Trudy Mat. Inst. Steklov., 88 (1967),  75–130
  46. Jackson's inequality in $L_2$

    Trudy Mat. Inst. Steklov., 88 (1967),  71–74
  47. The approximation of functions by polynomials with constraints

    Dokl. Akad. Nauk SSSR, 162:2 (1965),  290–293
  48. On some extremal problems for polynomials

    Trudy Mat. Inst. Steklov., 78 (1965),  48–89

  49. Yurii Nikolaevich Subbotin (A Tribute to His Memory)

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  9–16
  50. On the 75th birthday of professor Vitalii Vladimirovich Arestov

    Ural Math. J., 4:2 (2018),  3–5
  51. Yurii Nikolaevich Subbotin (on his 70th birthday)

    Uspekhi Mat. Nauk, 62:2(374) (2007),  187–190
  52. Sergei Borisovich Stechkin (obituary)

    Uspekhi Mat. Nauk, 51:6(312) (1996),  3–10
  53. S. B. Stechkin and approximation theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  3–16
  54. Proceedings of the Conference on Constructive Theory of Functions (Approximation Theory), August 24 – September 3, 1969 (review)

    Uspekhi Mat. Nauk, 28:3(171) (1973),  247–248
  55. Letter to the editor concerning the communication “A Property of Fourier Series” by A. M. Rubinov

    Mat. Zametki, 8:6 (1970),  823–825


© Steklov Math. Inst. of RAS, 2025