RUS  ENG
Full version
PEOPLE

Vinokurov Valerii Aleksandrovich

Publications in Math-Net.Ru

  1. The Eigenvalue and the Eigenfunction of the Sturm–Liouville Problem Treated as Analytic Functions of the Integrable Potential

    Differ. Uravn., 41:6 (2005),  730–738
  2. Analytic Dependence of the Solution of a Linear Differential Equation on Integrable Coefficients

    Differ. Uravn., 41:5 (2005),  589–602
  3. The Asymptotics of Eigenvalues and Eigenfunctions and a Trace Formula for a Potential with Delta Functions

    Differ. Uravn., 38:6 (2002),  735–751
  4. Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential

    Izv. RAN. Ser. Mat., 64:4 (2000),  47–108
  5. Arbitrary-order asymptotics of the eigenvalues and eigenfunctions of the Sturm–Liouville boundary value problem on an interval with integrable potential

    Differ. Uravn., 34:10 (1998),  1423–1426
  6. On the asymptotic behavior of the solution of a homogeneous second-order linear differential equation in Liouville normal form

    Differ. Uravn., 34:8 (1998),  1137–1139
  7. An algorithm for filtering and extrapolation of time series by splines

    Dokl. Akad. Nauk, 352:3 (1997),  298–300
  8. Explicit solution of a linear ordinary differential equation and a basic property of the exponential function

    Differ. Uravn., 33:3 (1997),  302–308
  9. Change of variables and multiplication of generalized functions

    Dokl. Akad. Nauk SSSR, 319:5 (1991),  1057–1064
  10. Logarithm of the solution of a linear differential equation, the Hausdorff formula and conservation laws

    Dokl. Akad. Nauk SSSR, 319:4 (1991),  792–797
  11. Solution of systems of algebraic equations with a random error in the matrix of a system

    Dokl. Akad. Nauk SSSR, 305:2 (1989),  271–273
  12. A numerical method for solving multipoint boundary-value problems for systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989),  1257–1258
  13. Transport of a manifold by the phase flow of an ordinary differential equation

    Dokl. Akad. Nauk SSSR, 295:3 (1987),  524–528
  14. Strict regularizability of linear inverse problems

    Dokl. Akad. Nauk SSSR, 292:6 (1987),  1292–1294
  15. Ideal gas adiabatic motions in Lagrange coordinates

    Dokl. Akad. Nauk SSSR, 292:4 (1987),  828–832
  16. Bayes and Tikhonov extrapolation of random processes

    Dokl. Akad. Nauk SSSR, 290:3 (1986),  526–530
  17. Semi-explicit numerical methods for solving stiff problems

    Dokl. Akad. Nauk SSSR, 284:2 (1985),  272–277
  18. Strong regularizability of discontinuous functions

    Dokl. Akad. Nauk SSSR, 281:2 (1985),  265–269
  19. A basis of conservation laws for the equation $u_{tt}-u^\alpha_xu_{xx}=0$

    Dokl. Akad. Nauk SSSR, 280:2 (1985),  325–328
  20. Norming subspaces of a conjugate space and regularizability of inverse operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 6,  3–10
  21. Estimate of the dimensions of a gravitating mass by an external field

    Dokl. Akad. Nauk SSSR, 273:3 (1983),  525–528
  22. On some problems of linear regularizability

    Dokl. Akad. Nauk SSSR, 270:1 (1983),  31–34
  23. A posteriori estimates of the solutions of ill-posed inverse problems

    Dokl. Akad. Nauk SSSR, 263:2 (1982),  277–280
  24. A method of numerical solution of linear differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 22:5 (1982),  1080–1093
  25. An iterational method for solving non-linear boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 21:4 (1981),  897–906
  26. Regularizable functions in topological spaces and inverse problems

    Dokl. Akad. Nauk SSSR, 246:5 (1979),  1033–1037
  27. On the error in the approximate solution of linear inverse problems

    Dokl. Akad. Nauk SSSR, 246:4 (1979),  792–793
  28. Extension of a linear mapping to a completion with preservation of injectivity

    Dokl. Akad. Nauk SSSR, 245:5 (1979),  1036–1037
  29. Измеримость и регуляризуемость отображений, обратных к непрерывным линейным операторам

    Mat. Zametki, 26:4 (1979),  583–591
  30. Interpolation in categories of topological type

    Dokl. Akad. Nauk SSSR, 235:1 (1977),  19–22
  31. Mappings of complete lattices preserving bounds

    Dokl. Akad. Nauk SSSR, 234:5 (1977),  1004–1007
  32. Interpolation of locally convex topologies

    Dokl. Akad. Nauk SSSR, 232:3 (1977),  513–516
  33. A numerical study of the fundamental equation of superconductivity

    Dokl. Akad. Nauk SSSR, 231:4 (1976),  837–840
  34. A necessary and sufficient condition for linear regularizability

    Dokl. Akad. Nauk SSSR, 229:6 (1976),  1292–1294
  35. On the regularizability of linear inverse problems by linear methods

    Dokl. Akad. Nauk SSSR, 229:5 (1976),  1037–1040
  36. On the differentiability of functions in a Sobolev space

    Dokl. Akad. Nauk SSSR, 227:1 (1976),  15–18
  37. Integral error estimates. IV

    Zh. Vychisl. Mat. Mat. Fiz., 16:3 (1976),  549–566
  38. Asymptotic error estimates. III

    Zh. Vychisl. Mat. Mat. Fiz., 16:1 (1976),  3–19
  39. Measurability conditions and regularizability of mappings inverse to continuous linear mappings

    Dokl. Akad. Nauk SSSR, 220:3 (1975),  509–511
  40. Regularizability and analytic representability

    Dokl. Akad. Nauk SSSR, 220:2 (1975),  269–272
  41. Asymptotic error estimates. II

    Zh. Vychisl. Mat. Mat. Fiz., 15:6 (1975),  1369–1380
  42. Properties of the error functional $\Delta(f,R,\delta,x)$ as a function of $x$ with fixed $\delta$. I

    Zh. Vychisl. Mat. Mat. Fiz., 15:4 (1975),  815–829
  43. Estimation of the regularization parameter in nonlinear problems

    Zh. Vychisl. Mat. Mat. Fiz., 14:6 (1974),  1386–1392
  44. Regularizability almost everywhere

    Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974),  560–571
  45. The order of magnitude of the error in the computation of a function with approximately defined argument

    Zh. Vychisl. Mat. Mat. Fiz., 13:5 (1973),  1112–1123
  46. The error of an approximate solution of linear problems

    Zh. Vychisl. Mat. Mat. Fiz., 12:3 (1972),  756–762
  47. Two remarks on the choice of the regularization parameter

    Zh. Vychisl. Mat. Mat. Fiz., 12:2 (1972),  481–483
  48. The approximate method of the residual in nonreflexive spaces

    Zh. Vychisl. Mat. Mat. Fiz., 12:1 (1972),  207–212
  49. Regularization by continuous mappings

    Zh. Vychisl. Mat. Mat. Fiz., 11:6 (1971),  1584–1586
  50. The notion of regularizability for discontinuous mappings

    Zh. Vychisl. Mat. Mat. Fiz., 11:5 (1971),  1097–1112
  51. General error properties of the approximate solution of linear functional equations

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  22–28
  52. A certain necessary condition for Tihonov regularizability

    Dokl. Akad. Nauk SSSR, 195:3 (1970),  530–531
  53. On the error of the solution of a linear operator equation

    Zh. Vychisl. Mat. Mat. Fiz., 10:4 (1970),  830–839
  54. Limit of some functions at infinity

    Mat. Zametki, 1:3 (1967),  277–282

  55. Conference on Ill-Posed Problems

    Uspekhi Mat. Nauk, 35:6(216) (1980),  184–188
  56. Поправки к статье “О дифференцируемости функций из пространства Соболева” (ДАН, т. 227, № 1, 1976 г.)

    Dokl. Akad. Nauk SSSR, 247:6 (1979),  1287
  57. Поправки к статье “Регуляризуемость и аналитическая представимость” (ДАН, т. 220, № 2, 1975 г.)

    Dokl. Akad. Nauk SSSR, 247:6 (1979),  1287
  58. Mathematical School “The Method of Small Parameter and Its Application”

    Uspekhi Mat. Nauk, 33:3(201) (1978),  207–213


© Steklov Math. Inst. of RAS, 2024