RUS  ENG
Full version
PEOPLE

Veselov Aleksandr Petrovich

Publications in Math-Net.Ru

  1. Spinning Top in Quadratic Potential and Matrix Dressing Chain

    Regul. Chaotic Dyn., 30:4 (2025),  464–480
  2. Chern–Dold character in complex cobordisms and theta divisors

    Adv. Math., 449 (2024),  109720–35
  3. On radius of convergence of $q$-deformed real numbers

    Mosc. Math. J., 24:1 (2024),  1–19
  4. Todd Polynomials and Hirzebruch Numbers

    Trudy Mat. Inst. Steklova, 325 (2024),  81–92
  5. Classification of involutive commutative two-valued groups

    Uspekhi Mat. Nauk, 77:4(466) (2022),  91–172
  6. Quasi-invariant Hermite polynomials and Lassalle–Nekrasov correspondence

    Comm. Math. Phys., 386 (2021),  107–141
  7. Geodesic scattering on hyperboloids and Knörrer's map

    Nonlinearity, 34:9 (2021),  5926–5954
  8. Fricke identities, Frobenius $k$-characters and Markov equation

    Proc. Symp. Pure Math., 103 (2021),  67–78
  9. Integrable generalisations of Dirac magnetic monopole

    J. Phys. A, 43:59 (2020), 494004, 494004 pp.
  10. New integrable two-centre problem on sphere in Dirac magnetic field

    Lett. Math. Phys., 110 (2020),  3105–3119
  11. Conway topograph, $\mathrm{PGL}_2(\pmb{\mathbb Z})$-dynamics and two-valued groups

    Uspekhi Mat. Nauk, 74:3(447) (2019),  17–62
  12. On the Spectra of Real and Complex Lamé Operators

    SIGMA, 13 (2017), 049, 23 pp.
  13. Jacobi–Trudy formula for generalized Schur polynomials

    Mosc. Math. J., 14:1 (2014),  161–168
  14. Periodic Vortex Streets and Complex Monodromy

    SIGMA, 10 (2014), 114, 18 pp.
  15. On Quadrirational Yang–Baxter Maps

    SIGMA, 6 (2010), 033, 9 pp.
  16. Action of Coxeter groups on $m$-harmonic polynomials and Knizhnik–Zamolodchikov equations

    Mosc. Math. J., 3:4 (2003),  1269–1291
  17. On algebro-geometric Poisson brakets for the Volterra lattice

    Regul. Chaotic Dyn., 3:2 (1998),  3–9
  18. On the singularities of potentials of exactly soluble Schrödinger equations and on Hadamard's problem

    Uspekhi Mat. Nauk, 53:1(319) (1998),  211–212
  19. Integrable gradient flows and Morse theory

    Algebra i Analiz, 8:3 (1996),  78–103
  20. New integrable deformations of the Calogero–Moser quantum problem

    Uspekhi Mat. Nauk, 51:3(309) (1996),  185–186
  21. Exactly soluble periodic two-dimensional Schrödinger operators

    Uspekhi Mat. Nauk, 50:6(306) (1995),  171–172
  22. Factorization and Poisson correspondences

    TMF, 105:2 (1995),  225–245
  23. Hadamard's Problem and Coxeter Groups: New Examples of Huygens' Equations

    Funktsional. Anal. i Prilozhen., 28:1 (1994),  3–15
  24. Huygens' principle and integrability

    Uspekhi Mat. Nauk, 49:6(300) (1994),  7–78
  25. Dunkl operators, functional equations, and transformations of elliptic genera

    Uspekhi Mat. Nauk, 49:2(296) (1994),  147–148
  26. Calogero quantum problem, Knizhnik–Zamolodchikov equation and Huygens principle

    TMF, 98:3 (1994),  524–535
  27. Dressing Chains and Spectral Theory of the Schrödinger Operator

    Funktsional. Anal. i Prilozhen., 27:2 (1993),  1–21
  28. The Huygens principle and Coxeter groups

    Uspekhi Mat. Nauk, 48:3(291) (1993),  181–182
  29. Algebraic integrability for the Schrödinger equation and finite reflection groups

    TMF, 94:2 (1993),  253–275
  30. Parametric resonance and geodesics on an ellipsoid

    Funktsional. Anal. i Prilozhen., 26:3 (1992),  74–76
  31. Explicit formulas for spherical functions on symmetric spaces of type $A$II

    Funktsional. Anal. i Prilozhen., 26:1 (1992),  74–76
  32. The dynamics of mappings of toric manifolds connected with Lie algebras

    Trudy Mat. Inst. Steklov., 193 (1992),  60–65
  33. Integrable Lagrangian correspondences and the factorization of matrix polynomials

    Funktsional. Anal. i Prilozhen., 25:2 (1991),  38–49
  34. Growth of the number of images of a point under iterates of a multivalued map

    Mat. Zametki, 49:2 (1991),  29–35
  35. Integrable maps

    Uspekhi Mat. Nauk, 46:5(281) (1991),  3–45
  36. The Cremona group and dynamical systems

    Mat. Zametki, 45:3 (1989),  118–120
  37. Integrable discrete-time systems and difference operators

    Funktsional. Anal. i Prilozhen., 22:2 (1988),  1–13
  38. Integrable nonholonomic systems on Lie groups

    Mat. Zametki, 44:5 (1988),  604–619
  39. Integrable mappings and Lie algebras

    Dokl. Akad. Nauk SSSR, 292:6 (1987),  1289–1291
  40. Integration of the stationary problem for a classical spin chain

    TMF, 71:1 (1987),  154–159
  41. Time change in integrable systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 5,  25–29
  42. Currents on Lie groups with nonholonomic connection and integrable nonhamiltonian systems

    Funktsional. Anal. i Prilozhen., 20:4 (1986),  65–66
  43. Integrability of Novikov equations for principal chiral fields with multivalued Lagrangian

    Dokl. Akad. Nauk SSSR, 279:5 (1984),  1097–1100
  44. Finite-gap two-dimensional Schrödinger operators. Potential operators

    Dokl. Akad. Nauk SSSR, 279:4 (1984),  784–788
  45. Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations

    Dokl. Akad. Nauk SSSR, 279:1 (1984),  20–24
  46. Cnoidal solutions of the Landau-Lifshits equation for a bisublattice magnet

    Dokl. Akad. Nauk SSSR, 276:3 (1984),  590–593
  47. Poisson brackets and complex tori

    Trudy Mat. Inst. Steklov., 165 (1984),  49–61
  48. On integrability conditions for the Euler equations on $\mathrm{SO}(4)$

    Dokl. Akad. Nauk SSSR, 270:6 (1983),  1298–1300
  49. The Landau–Lifshits equation and integrable systems of classical mechanics

    Dokl. Akad. Nauk SSSR, 270:5 (1983),  1094–1097
  50. Structure of axisymmetric soliton solutions of Einstein's equations

    TMF, 54:2 (1983),  239–245
  51. On Poisson brackets compatible with algebraic geometry and Korteweg–de Vries dynamics on the set of finite-zone potentials

    Dokl. Akad. Nauk SSSR, 266:3 (1982),  533–537
  52. Dynamics of the singularities of solutions of some nonlinear equations

    TMF, 50:3 (1982),  477–480
  53. Finite-zone potentials and integrable systems on a sphere with quadratic potential

    Funktsional. Anal. i Prilozhen., 14:1 (1980),  48–50
  54. Rational solutions of the Kadomtsev–Petviashvili equation and Hamiltonian systems

    Uspekhi Mat. Nauk, 35:1(211) (1980),  195–196
  55. Hamiltonian formalism for the Novikov–Krichever equations for the commutativity of two operators

    Funktsional. Anal. i Prilozhen., 13:1 (1979),  1–7

  56. Числа Бернулли, множества Эйлера и формулы сложения

    Kvant, 2023, no. 11-12,  10–19
  57. Iskander Asanovich Taimanov (on his 60th birthday)

    Uspekhi Mat. Nauk, 77:6(468) (2022),  209–218
  58. Чебышёв, Абель и эллиптические интегралы

    Kvant, 2021, no. 7,  2–7
  59. Igor' Moiseevich Krichever (on his 70th birthday)

    Uspekhi Mat. Nauk, 76:4(460) (2021),  183–193
  60. Chaos and integrability in $\operatorname{SL}(2,\mathbb R)$-geometry

    Uspekhi Mat. Nauk, 76:4(460) (2021),  3–36
  61. Alexandre Mikhailovich Vinogradov (obituary)

    Uspekhi Mat. Nauk, 75:2(452) (2020),  185–190
  62. Viktor Matveevich Buchstaber (on his 70th birthday)

    Uspekhi Mat. Nauk, 68:3(411) (2013),  195–204
  63. A few things I learnt from Jürgen Moser

    Nelin. Dinam., 5:1 (2009),  39–51
  64. A few things I learnt from Jürgen Moser

    Regul. Chaotic Dyn., 13:6 (2008),  515–524
  65. Viktor Matveevich Buchstaber (on his 60th birthday)

    Uspekhi Mat. Nauk, 58:3(351) (2003),  199–206
  66. Action variables of the Kovalevskaya top

    Regul. Chaotic Dyn., 3:3 (1998),  18–31


© Steklov Math. Inst. of RAS, 2025