RUS  ENG
Full version
PEOPLE

Belokurov Vladimir Viktorovich

Publications in Math-Net.Ru

  1. Physics at Moscow State University

    UFN, 195:4 (2025),  335–343
  2. Peculiar spaces for relativistic fields

    Chebyshevskii Sb., 21:2 (2020),  37–42
  3. Polar decomposition of the Wiener measure: Schwarzian theory versus conformal quantum mechanics

    TMF, 200:3 (2019),  465–477
  4. Nonlinear nonlocal substitutions in functional integrals

    Fundam. Prikl. Mat., 21:5 (2016),  47–59
  5. The existence of functional integrals in a model of quantum field theory on a loop space

    Uspekhi Mat. Nauk, 59:5(359) (2004),  163–164
  6. A method of summation of divergent series to any accuracy

    Mat. Zametki, 68:1 (2000),  24–35
  7. Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory

    TMF, 123:3 (2000),  452–461
  8. A general approach to calculation of functional integrals and summation of divergent series

    Fundam. Prikl. Mat., 5:2 (1999),  363–383
  9. A summation method for divergent series

    Uspekhi Mat. Nauk, 54:3(327) (1999),  153–154
  10. Calculation of functional integrals with the help of convergent series

    Fundam. Prikl. Mat., 3:3 (1997),  693–713
  11. Perturbation theory with convergent series for functional integrals with respect to the Feynman measure

    Uspekhi Mat. Nauk, 52:2(314) (1997),  155–156
  12. One-loop analysis of the equivalence of different descriptions of the gauged Wess–Zumino–Witten models

    Dokl. Akad. Nauk, 349:6 (1996),  752–753
  13. Method of approximate calculating path integrals by using perturbation theory with convergent series. II. Euclidean quantum field theory

    TMF, 109:1 (1996),  60–69
  14. Method of approximate calculating path integrals by using perturbation theory with convergent series. I

    TMF, 109:1 (1996),  51–59
  15. Operator method of solving renormalization group equations

    Fundam. Prikl. Mat., 1:3 (1995),  613–621
  16. Ultraviolet finiteness of nonlinear two-dimensional sigma models on affine-metric manifolds

    TMF, 78:3 (1989),  471–474
  17. Calculation of double logarithmic asymptotics of on-shell vertex functions

    TMF, 48:2 (1981),  147–155
  18. Double logarithmic asymptotic behavior of vertex functions in quantum chromodynamics. II. Eighth order of perturbation theory

    TMF, 45:2 (1980),  171–179
  19. Double logarithmic asymptotic behavior of vertex functions in quantum chromodynamics. I

    TMF, 44:2 (1980),  147–156
  20. A method for calculating the double logarithmic asymptotic behavior of vertex functions in quantum field theory

    TMF, 41:2 (1979),  157–168
  21. Ultraviolet asymptotic behavior in the presence of non-Abelian gauge groups

    TMF, 19:2 (1974),  149–162

  22. In memory of Andrei Alekseevich Slavnov

    UFN, 192:11 (2022),  1293–1294
  23. Dmitrii Igorevich Kazakov (on his 70th birthday)

    UFN, 191:12 (2021),  1403–1404
  24. In memory of Dmitrii Vasil'evich Shirkov

    UFN, 186:4 (2016),  445–446
  25. To the 70th birthday of Academician A. A. Slavnov

    Trudy Mat. Inst. Steklova, 272 (2011),  7–8
  26. Yurii Petrovich Solov'ev (obituary)

    Uspekhi Mat. Nauk, 59:5(359) (2004),  135–140


© Steklov Math. Inst. of RAS, 2025