RUS  ENG
Full version
PEOPLE

Shavgulidze Evgeni Tengizovich

Publications in Math-Net.Ru

  1. Peculiar spaces for relativistic fields

    Chebyshevskii Sb., 21:2 (2020),  37–42
  2. Polar decomposition of the Wiener measure: Schwarzian theory versus conformal quantum mechanics

    TMF, 200:3 (2019),  465–477
  3. Nonlinear nonlocal substitutions in functional integrals

    Fundam. Prikl. Mat., 21:5 (2016),  47–59
  4. Representation of monomials as a sum of powers of linear forms

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 2,  9–14
  5. The existence of functional integrals in a model of quantum field theory on a loop space

    Uspekhi Mat. Nauk, 59:5(359) (2004),  163–164
  6. Two classes of spaces reflexive in the sense of Pontryagin

    Mat. Sb., 194:10 (2003),  3–26
  7. A method of summation of divergent series to any accuracy

    Mat. Zametki, 68:1 (2000),  24–35
  8. Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory

    TMF, 123:3 (2000),  452–461
  9. Smooth Isometric Immersions into the Infinite-Dimensional Sphere

    Funktsional. Anal. i Prilozhen., 33:3 (1999),  93–95
  10. A general approach to calculation of functional integrals and summation of divergent series

    Fundam. Prikl. Mat., 5:2 (1999),  363–383
  11. A summation method for divergent series

    Uspekhi Mat. Nauk, 54:3(327) (1999),  153–154
  12. Quasiinvariant measures with respect to groups of diffeomorphisms on spaces of curves and surfaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 6,  19–25
  13. Calculation of functional integrals with the help of convergent series

    Fundam. Prikl. Mat., 3:3 (1997),  693–713
  14. Perturbation theory with convergent series for functional integrals with respect to the Feynman measure

    Uspekhi Mat. Nauk, 52:2(314) (1997),  155–156
  15. Quasi-invariant measures on groups of diffeomorphisms

    Trudy Mat. Inst. Steklova, 217 (1997),  189–208
  16. Special selfadjoint extensions of Schrödinger differential operators by means of Feynman integrals

    Dokl. Akad. Nauk, 348:6 (1996),  743–745
  17. Method of approximate calculating path integrals by using perturbation theory with convergent series. II. Euclidean quantum field theory

    TMF, 109:1 (1996),  60–69
  18. Method of approximate calculating path integrals by using perturbation theory with convergent series. I

    TMF, 109:1 (1996),  51–59
  19. The support of a symplectic Feynman measure and the uncertainty principle

    Dokl. Akad. Nauk, 323:6 (1992),  1038–1042
  20. A Simple Proof of Tarieladze's Theorem on Sufficiency of Positively Sufficient Topologies

    Teor. Veroyatnost. i Primenen., 37:2 (1992),  421–424
  21. Representation of the solutions of second-order linear evolution superdifferential equations by path integrals

    Dokl. Akad. Nauk SSSR, 309:3 (1989),  545–550
  22. A measure that is quasi-invariant with respect to the action of a group of diffeomorphisms of a finite-dimensional manifold

    Dokl. Akad. Nauk SSSR, 303:4 (1988),  811–814
  23. The Fourier transform and pseudodifferential operators in superanalysis

    Dokl. Akad. Nauk SSSR, 299:4 (1988),  816–820
  24. Periodic points of a map of a system of intervals

    Mat. Zametki, 43:3 (1988),  365–381
  25. A class of selfadjoint operators connected with the $P(\varphi)_n$ model

    Dokl. Akad. Nauk SSSR, 294:6 (1987),  1349–1353
  26. Hahn–Jordan decomposition for smooth measures

    Mat. Zametki, 30:3 (1981),  439–442
  27. On a diffeomorphism of a locally convex space

    Uspekhi Mat. Nauk, 34:5(209) (1979),  231–232
  28. An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle

    Funktsional. Anal. i Prilozhen., 12:3 (1978),  55–60
  29. Conditions for certain forms of completeness in the class of projective limits of sequences of inductive limits of sequences of Fréchet spaces

    Funktsional. Anal. i Prilozhen., 11:1 (1977),  91–92
  30. The Minlos theorem for measures that are not sign-definite

    Uspekhi Mat. Nauk, 31:3(189) (1976),  222
  31. $B_r$ completeness

    Funktsional. Anal. i Prilozhen., 9:4 (1975),  95–96
  32. Certain properties of fully complete locally convex spaces

    Tr. Mosk. Mat. Obs., 32 (1975),  251–266
  33. On the hypercompleteness of locally convex spaces

    Mat. Zametki, 13:2 (1973),  297–302

  34. Oleg Georgievich Smolyanov (on his 80th birthday)

    Uspekhi Mat. Nauk, 74:4(448) (2019),  191–193
  35. Oleg Georgievich Smolyanov (on his 70th birthday)

    Uspekhi Mat. Nauk, 64:1(385) (2009),  175–177
  36. Yurii Petrovich Solov'ev (obituary)

    Uspekhi Mat. Nauk, 59:5(359) (2004),  135–140
  37. Oleg Georgievitch Smolyanov (to 60th anniversary)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  69–70


© Steklov Math. Inst. of RAS, 2025